Joshua Sundance Bailey commited on
Commit
ead1471
·
1 Parent(s): 03fe7c9

fix azure openai embeddings

Browse files
langchain-streamlit-demo/app.py CHANGED
@@ -443,7 +443,7 @@ if st.session_state.llm:
443
  try:
444
  full_response = st.session_state.chain.invoke(prompt, config)
445
 
446
- except (openai.error.AuthenticationError, anthropic.AuthenticationError):
447
  st.error(
448
  f"Please enter a valid {st.session_state.provider} API key.",
449
  icon="❌",
 
443
  try:
444
  full_response = st.session_state.chain.invoke(prompt, config)
445
 
446
+ except (openai.AuthenticationError, anthropic.AuthenticationError):
447
  st.error(
448
  f"Please enter a valid {st.session_state.provider} API key.",
449
  icon="❌",
langchain-streamlit-demo/llm_resources.py CHANGED
@@ -10,7 +10,7 @@ from langchain.chat_models import (
10
  ChatAnyscale,
11
  )
12
  from langchain.document_loaders import PyPDFLoader
13
- from langchain.embeddings import OpenAIEmbeddings
14
  from langchain.retrievers import BM25Retriever, EnsembleRetriever
15
  from langchain.schema import Document, BaseRetriever
16
  from langchain.text_splitter import RecursiveCharacterTextSplitter
@@ -134,7 +134,9 @@ def get_texts_and_retriever(
134
  embeddings_kwargs = {"openai_api_key": openai_api_key}
135
  if use_azure and azure_kwargs:
136
  embeddings_kwargs.update(azure_kwargs)
137
- embeddings = OpenAIEmbeddings(**embeddings_kwargs)
 
 
138
 
139
  bm25_retriever = BM25Retriever.from_documents(texts)
140
  bm25_retriever.k = k
 
10
  ChatAnyscale,
11
  )
12
  from langchain.document_loaders import PyPDFLoader
13
+ from langchain.embeddings import AzureOpenAIEmbeddings, OpenAIEmbeddings
14
  from langchain.retrievers import BM25Retriever, EnsembleRetriever
15
  from langchain.schema import Document, BaseRetriever
16
  from langchain.text_splitter import RecursiveCharacterTextSplitter
 
134
  embeddings_kwargs = {"openai_api_key": openai_api_key}
135
  if use_azure and azure_kwargs:
136
  embeddings_kwargs.update(azure_kwargs)
137
+ embeddings = AzureOpenAIEmbeddings(**embeddings_kwargs)
138
+ else:
139
+ embeddings = OpenAIEmbeddings(**embeddings_kwargs)
140
 
141
  bm25_retriever = BM25Retriever.from_documents(texts)
142
  bm25_retriever.k = k