Joshua Sundance Bailey
commited on
Commit
·
21eccfc
1
Parent(s):
87d6984
create llm_resources.py
Browse files- langchain-streamlit-demo/app.py +34 -131
- langchain-streamlit-demo/llm_resources.py +153 -0
langchain-streamlit-demo/app.py
CHANGED
@@ -1,31 +1,16 @@
|
|
1 |
from datetime import datetime
|
2 |
-
from tempfile import NamedTemporaryFile
|
3 |
from typing import Tuple, List, Dict, Any, Union
|
4 |
|
5 |
import anthropic
|
6 |
import langsmith.utils
|
7 |
import openai
|
8 |
import streamlit as st
|
9 |
-
from langchain.callbacks.base import BaseCallbackHandler
|
10 |
from langchain.callbacks.tracers.langchain import LangChainTracer, wait_for_all_tracers
|
11 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
12 |
-
from langchain.chains import RetrievalQA
|
13 |
-
from langchain.chains.llm import LLMChain
|
14 |
-
from langchain.chat_models import (
|
15 |
-
AzureChatOpenAI,
|
16 |
-
ChatAnthropic,
|
17 |
-
ChatAnyscale,
|
18 |
-
ChatOpenAI,
|
19 |
-
)
|
20 |
-
from langchain.document_loaders import PyPDFLoader
|
21 |
-
from langchain.embeddings import OpenAIEmbeddings
|
22 |
from langchain.memory import ConversationBufferMemory, StreamlitChatMessageHistory
|
23 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
24 |
-
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
25 |
from langchain.schema.document import Document
|
26 |
from langchain.schema.retriever import BaseRetriever
|
27 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
28 |
-
from langchain.vectorstores import FAISS
|
29 |
from langsmith.client import Client
|
30 |
from streamlit_feedback import streamlit_feedback
|
31 |
|
@@ -52,8 +37,7 @@ from defaults import (
|
|
52 |
DEFAULT_CHUNK_OVERLAP,
|
53 |
DEFAULT_RETRIEVER_K,
|
54 |
)
|
55 |
-
from
|
56 |
-
from summarize import get_rag_summarization_chain
|
57 |
|
58 |
__version__ = "0.0.13"
|
59 |
|
@@ -84,61 +68,29 @@ st_init_null(
|
|
84 |
"trace_link",
|
85 |
)
|
86 |
|
87 |
-
# ---
|
88 |
STMEMORY = StreamlitChatMessageHistory(key="langchain_messages")
|
89 |
MEMORY = ConversationBufferMemory(
|
90 |
chat_memory=STMEMORY,
|
91 |
return_messages=True,
|
92 |
memory_key="chat_history",
|
93 |
)
|
94 |
-
|
95 |
-
|
96 |
-
# --- Callbacks ---
|
97 |
-
class StreamHandler(BaseCallbackHandler):
|
98 |
-
def __init__(self, container, initial_text=""):
|
99 |
-
self.container = container
|
100 |
-
self.text = initial_text
|
101 |
-
|
102 |
-
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
103 |
-
self.text += token
|
104 |
-
self.container.markdown(self.text)
|
105 |
-
|
106 |
-
|
107 |
RUN_COLLECTOR = RunCollectorCallbackHandler()
|
108 |
|
109 |
|
110 |
@st.cache_data
|
111 |
-
def
|
112 |
uploaded_file_bytes: bytes,
|
113 |
chunk_size: int = DEFAULT_CHUNK_SIZE,
|
114 |
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
|
115 |
k: int = DEFAULT_RETRIEVER_K,
|
116 |
) -> Tuple[List[Document], BaseRetriever]:
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
124 |
-
chunk_size=chunk_size,
|
125 |
-
chunk_overlap=chunk_overlap,
|
126 |
-
)
|
127 |
-
texts = text_splitter.split_documents(documents)
|
128 |
-
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
129 |
-
|
130 |
-
bm25_retriever = BM25Retriever.from_documents(texts)
|
131 |
-
bm25_retriever.k = k
|
132 |
-
|
133 |
-
faiss_vectorstore = FAISS.from_documents(texts, embeddings)
|
134 |
-
faiss_retriever = faiss_vectorstore.as_retriever(search_kwargs={"k": k})
|
135 |
-
|
136 |
-
ensemble_retriever = EnsembleRetriever(
|
137 |
-
retrievers=[bm25_retriever, faiss_retriever],
|
138 |
-
weights=[0.5, 0.5],
|
139 |
-
)
|
140 |
-
|
141 |
-
return texts, ensemble_retriever
|
142 |
|
143 |
|
144 |
# --- Sidebar ---
|
@@ -351,46 +303,21 @@ with sidebar:
|
|
351 |
|
352 |
|
353 |
# --- LLM Instantiation ---
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
streaming=True,
|
370 |
-
max_tokens_to_sample=max_tokens,
|
371 |
-
)
|
372 |
-
|
373 |
-
elif st.session_state.provider == "Anyscale Endpoints":
|
374 |
-
st.session_state.llm = ChatAnyscale(
|
375 |
-
model_name=model,
|
376 |
-
anyscale_api_key=provider_api_key,
|
377 |
-
temperature=temperature,
|
378 |
-
streaming=True,
|
379 |
-
max_tokens=max_tokens,
|
380 |
-
)
|
381 |
-
|
382 |
-
elif AZURE_AVAILABLE and st.session_state.provider == "Azure OpenAI":
|
383 |
-
st.session_state.llm = AzureChatOpenAI(
|
384 |
-
openai_api_base=AZURE_OPENAI_BASE_URL,
|
385 |
-
openai_api_version=AZURE_OPENAI_API_VERSION,
|
386 |
-
deployment_name=AZURE_OPENAI_DEPLOYMENT_NAME,
|
387 |
-
openai_api_key=AZURE_OPENAI_API_KEY,
|
388 |
-
openai_api_type="azure",
|
389 |
-
model_version=AZURE_OPENAI_MODEL_VERSION,
|
390 |
-
temperature=temperature,
|
391 |
-
streaming=True,
|
392 |
-
max_tokens=max_tokens,
|
393 |
-
)
|
394 |
|
395 |
# --- Chat History ---
|
396 |
if len(STMEMORY.messages) == 0:
|
@@ -451,38 +378,15 @@ if st.session_state.llm:
|
|
451 |
stream_handler = StreamHandler(message_placeholder)
|
452 |
callbacks.append(stream_handler)
|
453 |
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
elif document_chat_chain_type == "Summarization":
|
461 |
-
return get_rag_summarization_chain(
|
462 |
-
prompt,
|
463 |
-
st.session_state.retriever,
|
464 |
-
st.session_state.llm,
|
465 |
-
)
|
466 |
-
else:
|
467 |
-
return RetrievalQA.from_chain_type(
|
468 |
-
llm=st.session_state.llm,
|
469 |
-
chain_type=document_chat_chain_type,
|
470 |
-
retriever=st.session_state.retriever,
|
471 |
-
memory=MEMORY,
|
472 |
-
output_key="output_text",
|
473 |
-
) | (lambda output: output["output_text"])
|
474 |
-
|
475 |
-
st.session_state.chain = (
|
476 |
-
get_rag_runnable()
|
477 |
-
if use_document_chat
|
478 |
-
else LLMChain(
|
479 |
-
prompt=chat_prompt,
|
480 |
-
llm=st.session_state.llm,
|
481 |
-
memory=MEMORY,
|
482 |
-
)
|
483 |
-
| (lambda output: output["text"])
|
484 |
)
|
485 |
|
|
|
486 |
try:
|
487 |
full_response = st.session_state.chain.invoke(prompt, config)
|
488 |
|
@@ -492,6 +396,7 @@ if st.session_state.llm:
|
|
492 |
icon="❌",
|
493 |
)
|
494 |
|
|
|
495 |
if full_response is not None:
|
496 |
message_placeholder.markdown(full_response)
|
497 |
|
@@ -507,6 +412,8 @@ if st.session_state.llm:
|
|
507 |
).url
|
508 |
except langsmith.utils.LangSmithError:
|
509 |
st.session_state.trace_link = None
|
|
|
|
|
510 |
if st.session_state.trace_link:
|
511 |
with sidebar:
|
512 |
st.markdown(
|
@@ -550,10 +457,6 @@ if st.session_state.llm:
|
|
550 |
score=score,
|
551 |
comment=feedback.get("text"),
|
552 |
)
|
553 |
-
# feedback = {
|
554 |
-
# "feedback_id": str(feedback_record.id),
|
555 |
-
# "score": score,
|
556 |
-
# }
|
557 |
st.toast("Feedback recorded!", icon="📝")
|
558 |
else:
|
559 |
st.warning("Invalid feedback score.")
|
|
|
1 |
from datetime import datetime
|
|
|
2 |
from typing import Tuple, List, Dict, Any, Union
|
3 |
|
4 |
import anthropic
|
5 |
import langsmith.utils
|
6 |
import openai
|
7 |
import streamlit as st
|
|
|
8 |
from langchain.callbacks.tracers.langchain import LangChainTracer, wait_for_all_tracers
|
9 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from langchain.memory import ConversationBufferMemory, StreamlitChatMessageHistory
|
11 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
|
12 |
from langchain.schema.document import Document
|
13 |
from langchain.schema.retriever import BaseRetriever
|
|
|
|
|
14 |
from langsmith.client import Client
|
15 |
from streamlit_feedback import streamlit_feedback
|
16 |
|
|
|
37 |
DEFAULT_CHUNK_OVERLAP,
|
38 |
DEFAULT_RETRIEVER_K,
|
39 |
)
|
40 |
+
from llm_resources import get_runnable, get_llm, get_texts_and_retriever, StreamHandler
|
|
|
41 |
|
42 |
__version__ = "0.0.13"
|
43 |
|
|
|
68 |
"trace_link",
|
69 |
)
|
70 |
|
71 |
+
# --- LLM globals ---
|
72 |
STMEMORY = StreamlitChatMessageHistory(key="langchain_messages")
|
73 |
MEMORY = ConversationBufferMemory(
|
74 |
chat_memory=STMEMORY,
|
75 |
return_messages=True,
|
76 |
memory_key="chat_history",
|
77 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
RUN_COLLECTOR = RunCollectorCallbackHandler()
|
79 |
|
80 |
|
81 |
@st.cache_data
|
82 |
+
def get_texts_and_retriever_cacheable_wrapper(
|
83 |
uploaded_file_bytes: bytes,
|
84 |
chunk_size: int = DEFAULT_CHUNK_SIZE,
|
85 |
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
|
86 |
k: int = DEFAULT_RETRIEVER_K,
|
87 |
) -> Tuple[List[Document], BaseRetriever]:
|
88 |
+
return get_texts_and_retriever(
|
89 |
+
uploaded_file_bytes=uploaded_file_bytes,
|
90 |
+
chunk_size=chunk_size,
|
91 |
+
chunk_overlap=chunk_overlap,
|
92 |
+
k=k,
|
93 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
|
96 |
# --- Sidebar ---
|
|
|
303 |
|
304 |
|
305 |
# --- LLM Instantiation ---
|
306 |
+
llm = get_llm(
|
307 |
+
provider=st.session_state.provider,
|
308 |
+
model=model,
|
309 |
+
provider_api_key=provider_api_key,
|
310 |
+
temperature=temperature,
|
311 |
+
max_tokens=max_tokens,
|
312 |
+
azure_available=AZURE_AVAILABLE,
|
313 |
+
azure_dict={
|
314 |
+
"AZURE_OPENAI_BASE_URL": AZURE_OPENAI_BASE_URL,
|
315 |
+
"AZURE_OPENAI_API_VERSION": AZURE_OPENAI_API_VERSION,
|
316 |
+
"AZURE_OPENAI_DEPLOYMENT_NAME": AZURE_OPENAI_DEPLOYMENT_NAME,
|
317 |
+
"AZURE_OPENAI_API_KEY": AZURE_OPENAI_API_KEY,
|
318 |
+
"AZURE_OPENAI_MODEL_VERSION": AZURE_OPENAI_MODEL_VERSION,
|
319 |
+
},
|
320 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
# --- Chat History ---
|
323 |
if len(STMEMORY.messages) == 0:
|
|
|
378 |
stream_handler = StreamHandler(message_placeholder)
|
379 |
callbacks.append(stream_handler)
|
380 |
|
381 |
+
st.session_state.chain = get_runnable(
|
382 |
+
use_document_chat,
|
383 |
+
document_chat_chain_type,
|
384 |
+
st.session_state.llm,
|
385 |
+
st.session_state.retriever,
|
386 |
+
MEMORY,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
)
|
388 |
|
389 |
+
# --- LLM call ---
|
390 |
try:
|
391 |
full_response = st.session_state.chain.invoke(prompt, config)
|
392 |
|
|
|
396 |
icon="❌",
|
397 |
)
|
398 |
|
399 |
+
# --- Display output ---
|
400 |
if full_response is not None:
|
401 |
message_placeholder.markdown(full_response)
|
402 |
|
|
|
412 |
).url
|
413 |
except langsmith.utils.LangSmithError:
|
414 |
st.session_state.trace_link = None
|
415 |
+
|
416 |
+
# --- LangSmith Trace Link ---
|
417 |
if st.session_state.trace_link:
|
418 |
with sidebar:
|
419 |
st.markdown(
|
|
|
457 |
score=score,
|
458 |
comment=feedback.get("text"),
|
459 |
)
|
|
|
|
|
|
|
|
|
460 |
st.toast("Feedback recorded!", icon="📝")
|
461 |
else:
|
462 |
st.warning("Invalid feedback score.")
|
langchain-streamlit-demo/llm_resources.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tempfile import NamedTemporaryFile
|
2 |
+
from typing import Tuple, List
|
3 |
+
|
4 |
+
from langchain import LLMChain, FAISS
|
5 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain.chat_models import (
|
8 |
+
AzureChatOpenAI,
|
9 |
+
ChatOpenAI,
|
10 |
+
ChatAnthropic,
|
11 |
+
ChatAnyscale,
|
12 |
+
)
|
13 |
+
from langchain.document_loaders import PyPDFLoader
|
14 |
+
from langchain.embeddings import OpenAIEmbeddings
|
15 |
+
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
16 |
+
from langchain.schema import Document, BaseRetriever
|
17 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
18 |
+
|
19 |
+
from app import chat_prompt, prompt, openai_api_key
|
20 |
+
from defaults import DEFAULT_CHUNK_SIZE, DEFAULT_CHUNK_OVERLAP, DEFAULT_RETRIEVER_K
|
21 |
+
from qagen import get_rag_qa_gen_chain
|
22 |
+
from summarize import get_rag_summarization_chain
|
23 |
+
|
24 |
+
|
25 |
+
def get_runnable(
|
26 |
+
use_document_chat: bool,
|
27 |
+
document_chat_chain_type: str,
|
28 |
+
llm,
|
29 |
+
retriever,
|
30 |
+
memory,
|
31 |
+
):
|
32 |
+
if not use_document_chat:
|
33 |
+
return LLMChain(
|
34 |
+
prompt=chat_prompt,
|
35 |
+
llm=llm,
|
36 |
+
memory=memory,
|
37 |
+
) | (lambda output: output["text"])
|
38 |
+
|
39 |
+
if document_chat_chain_type == "Q&A Generation":
|
40 |
+
return get_rag_qa_gen_chain(
|
41 |
+
retriever,
|
42 |
+
llm,
|
43 |
+
)
|
44 |
+
elif document_chat_chain_type == "Summarization":
|
45 |
+
return get_rag_summarization_chain(
|
46 |
+
prompt,
|
47 |
+
retriever,
|
48 |
+
llm,
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
return RetrievalQA.from_chain_type(
|
52 |
+
llm=llm,
|
53 |
+
chain_type=document_chat_chain_type,
|
54 |
+
retriever=retriever,
|
55 |
+
memory=memory,
|
56 |
+
output_key="output_text",
|
57 |
+
) | (lambda output: output["output_text"])
|
58 |
+
|
59 |
+
|
60 |
+
def get_llm(
|
61 |
+
provider: str,
|
62 |
+
model: str,
|
63 |
+
provider_api_key: str,
|
64 |
+
temperature: float,
|
65 |
+
max_tokens: int,
|
66 |
+
azure_available: bool,
|
67 |
+
azure_dict: dict[str, str],
|
68 |
+
):
|
69 |
+
if azure_available and provider == "Azure OpenAI":
|
70 |
+
return AzureChatOpenAI(
|
71 |
+
openai_api_base=azure_dict["AZURE_OPENAI_BASE_URL"],
|
72 |
+
openai_api_version=azure_dict["AZURE_OPENAI_API_VERSION"],
|
73 |
+
deployment_name=azure_dict["AZURE_OPENAI_DEPLOYMENT_NAME"],
|
74 |
+
openai_api_key=azure_dict["AZURE_OPENAI_API_KEY"],
|
75 |
+
openai_api_type="azure",
|
76 |
+
model_version=azure_dict["AZURE_OPENAI_MODEL_VERSION"],
|
77 |
+
temperature=temperature,
|
78 |
+
streaming=True,
|
79 |
+
max_tokens=max_tokens,
|
80 |
+
)
|
81 |
+
|
82 |
+
elif provider_api_key:
|
83 |
+
if provider == "OpenAI":
|
84 |
+
return ChatOpenAI(
|
85 |
+
model_name=model,
|
86 |
+
openai_api_key=provider_api_key,
|
87 |
+
temperature=temperature,
|
88 |
+
streaming=True,
|
89 |
+
max_tokens=max_tokens,
|
90 |
+
)
|
91 |
+
|
92 |
+
elif provider == "Anthropic":
|
93 |
+
return ChatAnthropic(
|
94 |
+
model=model,
|
95 |
+
anthropic_api_key=provider_api_key,
|
96 |
+
temperature=temperature,
|
97 |
+
streaming=True,
|
98 |
+
max_tokens_to_sample=max_tokens,
|
99 |
+
)
|
100 |
+
|
101 |
+
elif provider == "Anyscale Endpoints":
|
102 |
+
return ChatAnyscale(
|
103 |
+
model_name=model,
|
104 |
+
anyscale_api_key=provider_api_key,
|
105 |
+
temperature=temperature,
|
106 |
+
streaming=True,
|
107 |
+
max_tokens=max_tokens,
|
108 |
+
)
|
109 |
+
|
110 |
+
return None
|
111 |
+
|
112 |
+
|
113 |
+
def get_texts_and_retriever(
|
114 |
+
uploaded_file_bytes: bytes,
|
115 |
+
chunk_size: int = DEFAULT_CHUNK_SIZE,
|
116 |
+
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
|
117 |
+
k: int = DEFAULT_RETRIEVER_K,
|
118 |
+
) -> Tuple[List[Document], BaseRetriever]:
|
119 |
+
with NamedTemporaryFile() as temp_file:
|
120 |
+
temp_file.write(uploaded_file_bytes)
|
121 |
+
temp_file.seek(0)
|
122 |
+
|
123 |
+
loader = PyPDFLoader(temp_file.name)
|
124 |
+
documents = loader.load()
|
125 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
126 |
+
chunk_size=chunk_size,
|
127 |
+
chunk_overlap=chunk_overlap,
|
128 |
+
)
|
129 |
+
texts = text_splitter.split_documents(documents)
|
130 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
131 |
+
|
132 |
+
bm25_retriever = BM25Retriever.from_documents(texts)
|
133 |
+
bm25_retriever.k = k
|
134 |
+
|
135 |
+
faiss_vectorstore = FAISS.from_documents(texts, embeddings)
|
136 |
+
faiss_retriever = faiss_vectorstore.as_retriever(search_kwargs={"k": k})
|
137 |
+
|
138 |
+
ensemble_retriever = EnsembleRetriever(
|
139 |
+
retrievers=[bm25_retriever, faiss_retriever],
|
140 |
+
weights=[0.5, 0.5],
|
141 |
+
)
|
142 |
+
|
143 |
+
return texts, ensemble_retriever
|
144 |
+
|
145 |
+
|
146 |
+
class StreamHandler(BaseCallbackHandler):
|
147 |
+
def __init__(self, container, initial_text=""):
|
148 |
+
self.container = container
|
149 |
+
self.text = initial_text
|
150 |
+
|
151 |
+
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
152 |
+
self.text += token
|
153 |
+
self.container.markdown(self.text)
|