File size: 5,018 Bytes
bfc1cf6
 
 
 
ef21c2f
bfc1cf6
 
 
ef21c2f
 
 
bfc1cf6
ef21c2f
 
bfc1cf6
ef21c2f
 
 
bfc1cf6
ef21c2f
 
bfc1cf6
ef21c2f
 
bfc1cf6
ef21c2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfc1cf6
 
 
 
 
 
 
 
 
 
 
ef21c2f
 
 
 
 
bfc1cf6
ef21c2f
 
 
 
 
 
 
 
 
 
 
 
 
 
bfc1cf6
 
ef21c2f
 
 
bfc1cf6
 
ef21c2f
 
bfc1cf6
 
ef21c2f
bfc1cf6
 
 
 
ef21c2f
 
 
 
 
 
bfc1cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c2b048
bfc1cf6
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# app.py
import os
import gradio as gr
from anthropic import Anthropic
import wolframalpha
from datetime import datetime, timedelta
from collections import deque

# Initialize clients
anthropic = Anthropic(api_key=os.environ.get('ANTHROPIC_API_KEY'))
wolfram_client = wolframalpha.Client(os.environ.get('WOLFRAM_APPID'))

def verify_solution(problem, claimed_solution):
    """Verify a mathematical solution using Wolfram Alpha"""
    try:
        # Clean up the problem and solution for Wolfram Alpha
        query = f"Solve {problem}"
        result = wolfram_client.query(query)
        
        # Extract the solution from Wolfram Alpha
        wolfram_solution = next(result.results).text
        
        # Compare solutions (needs sophisticated parsing based on your problem types)
        solutions_match = compare_solutions(wolfram_solution, claimed_solution)
        
        return {
            'verified': solutions_match,
            'wolfram_solution': wolfram_solution,
            'match': solutions_match
        }
    except Exception as e:
        return {
            'verified': False,
            'error': str(e),
            'wolfram_solution': None
        }

def compare_solutions(wolfram_sol, claude_sol):
    """Compare two solutions for mathematical equivalence"""
    # This would need sophisticated parsing based on your problem types
    # Basic example:
    return abs(float(wolfram_sol) - float(claude_sol)) < 0.001

def generate_test(subject):
    """Generate and verify a math test"""
    try:
        # Generate the test using Claude
        system_prompt = """Generate 3 university-level math questions with numerical solutions that can be verified.
        For each question:
        1. State the problem clearly
        2. Provide your step-by-step solution
        3. Give the final answer in a format that can be verified
        Use simple $$ for all math expressions."""
        
        message = anthropic.messages.create(
            model="claude-3-opus-20240229",
            max_tokens=1500,
            temperature=0.7,
            messages=[{
                "role": "user",
                "content": f"{system_prompt}\n\nWrite an exam for {subject}."
            }]
        )
        
        # Extract questions and solutions
        content = message.content[0].text
        
        # Add verification results
        verification_results = []
        
        # For each question/solution pair (you'll need to parse the content)
        # Example structure:
        verification_note = "\n\n## Solution Verification:\n"
        for i, (problem, solution) in enumerate(parse_questions(content)):
            result = verify_solution(problem, solution)
            verification_note += f"\nQuestion {i+1}:\n"
            if result['verified']:
                verification_note += "✅ Solution verified by Wolfram Alpha\n"
            else:
                verification_note += "⚠️ Solution needs verification\n"
                if result['wolfram_solution']:
                    verification_note += f"Wolfram Alpha got: {result['wolfram_solution']}\n"
        
        # Add usage statistics
        usage_stats = f"""
        \n---\nUsage Statistics:
        • Input Tokens: {message.usage.input_tokens:,}
        • Output Tokens: {message.usage.output_tokens:,}
        • Wolfram Alpha calls: {len(verification_results)}
        
        Cost Breakdown:
        • Claude Cost: ${((message.usage.input_tokens / 1000) * 0.015) + ((message.usage.output_tokens / 1000) * 0.075):.4f}
        • Wolfram API calls: {len(verification_results)}
        """
        
        return content + verification_note + usage_stats
            
    except Exception as e:
        return f"Error: {str(e)}"

# Update requirements.txt to include:
# wolframalpha==5.0.0
# Update environment variables to include WOLFRAM_APPID

# Rest of your Gradio interface code remains the same...

# Subject choices
subjects = [
    "Single Variable Calculus",
    "Multivariable Calculus", 
    "Linear Algebra",
    "Differential Equations",
    "Real Analysis",
    "Complex Analysis",
    "Abstract Algebra",
    "Probability Theory",
    "Numerical Analysis",
    "Topology"
]

# Create Gradio interface
interface = gr.Interface(
    fn=generate_test,
    inputs=gr.Dropdown(
        choices=subjects,
        label="Select Mathematics Subject",
        info="Choose a subject for the exam questions"
    ),
    outputs=gr.Markdown(
        label="Generated Test",
        latex_delimiters=[
            {"left": "$$", "right": "$$", "display": True},
            {"left": "$", "right": "$", "display": False}
        ]
    ),
    title="Advanced Mathematics Test Generator",
    description="""Generates university-level mathematics exam questions with solutions using Claude 3 Opus.
    Limited to 25 requests per day. Please use responsibly.""",
    theme="default",
    allow_flagging="never"
)

# Launch the interface
if __name__ == "__main__":
    interface.launch()