Spaces:
Running
Running
File size: 5,018 Bytes
bfc1cf6 ef21c2f bfc1cf6 ef21c2f bfc1cf6 ef21c2f bfc1cf6 ef21c2f bfc1cf6 ef21c2f bfc1cf6 ef21c2f bfc1cf6 ef21c2f bfc1cf6 ef21c2f bfc1cf6 ef21c2f bfc1cf6 ef21c2f bfc1cf6 ef21c2f bfc1cf6 ef21c2f bfc1cf6 ef21c2f bfc1cf6 5c2b048 bfc1cf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# app.py
import os
import gradio as gr
from anthropic import Anthropic
import wolframalpha
from datetime import datetime, timedelta
from collections import deque
# Initialize clients
anthropic = Anthropic(api_key=os.environ.get('ANTHROPIC_API_KEY'))
wolfram_client = wolframalpha.Client(os.environ.get('WOLFRAM_APPID'))
def verify_solution(problem, claimed_solution):
"""Verify a mathematical solution using Wolfram Alpha"""
try:
# Clean up the problem and solution for Wolfram Alpha
query = f"Solve {problem}"
result = wolfram_client.query(query)
# Extract the solution from Wolfram Alpha
wolfram_solution = next(result.results).text
# Compare solutions (needs sophisticated parsing based on your problem types)
solutions_match = compare_solutions(wolfram_solution, claimed_solution)
return {
'verified': solutions_match,
'wolfram_solution': wolfram_solution,
'match': solutions_match
}
except Exception as e:
return {
'verified': False,
'error': str(e),
'wolfram_solution': None
}
def compare_solutions(wolfram_sol, claude_sol):
"""Compare two solutions for mathematical equivalence"""
# This would need sophisticated parsing based on your problem types
# Basic example:
return abs(float(wolfram_sol) - float(claude_sol)) < 0.001
def generate_test(subject):
"""Generate and verify a math test"""
try:
# Generate the test using Claude
system_prompt = """Generate 3 university-level math questions with numerical solutions that can be verified.
For each question:
1. State the problem clearly
2. Provide your step-by-step solution
3. Give the final answer in a format that can be verified
Use simple $$ for all math expressions."""
message = anthropic.messages.create(
model="claude-3-opus-20240229",
max_tokens=1500,
temperature=0.7,
messages=[{
"role": "user",
"content": f"{system_prompt}\n\nWrite an exam for {subject}."
}]
)
# Extract questions and solutions
content = message.content[0].text
# Add verification results
verification_results = []
# For each question/solution pair (you'll need to parse the content)
# Example structure:
verification_note = "\n\n## Solution Verification:\n"
for i, (problem, solution) in enumerate(parse_questions(content)):
result = verify_solution(problem, solution)
verification_note += f"\nQuestion {i+1}:\n"
if result['verified']:
verification_note += "✅ Solution verified by Wolfram Alpha\n"
else:
verification_note += "⚠️ Solution needs verification\n"
if result['wolfram_solution']:
verification_note += f"Wolfram Alpha got: {result['wolfram_solution']}\n"
# Add usage statistics
usage_stats = f"""
\n---\nUsage Statistics:
• Input Tokens: {message.usage.input_tokens:,}
• Output Tokens: {message.usage.output_tokens:,}
• Wolfram Alpha calls: {len(verification_results)}
Cost Breakdown:
• Claude Cost: ${((message.usage.input_tokens / 1000) * 0.015) + ((message.usage.output_tokens / 1000) * 0.075):.4f}
• Wolfram API calls: {len(verification_results)}
"""
return content + verification_note + usage_stats
except Exception as e:
return f"Error: {str(e)}"
# Update requirements.txt to include:
# wolframalpha==5.0.0
# Update environment variables to include WOLFRAM_APPID
# Rest of your Gradio interface code remains the same...
# Subject choices
subjects = [
"Single Variable Calculus",
"Multivariable Calculus",
"Linear Algebra",
"Differential Equations",
"Real Analysis",
"Complex Analysis",
"Abstract Algebra",
"Probability Theory",
"Numerical Analysis",
"Topology"
]
# Create Gradio interface
interface = gr.Interface(
fn=generate_test,
inputs=gr.Dropdown(
choices=subjects,
label="Select Mathematics Subject",
info="Choose a subject for the exam questions"
),
outputs=gr.Markdown(
label="Generated Test",
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
]
),
title="Advanced Mathematics Test Generator",
description="""Generates university-level mathematics exam questions with solutions using Claude 3 Opus.
Limited to 25 requests per day. Please use responsibly.""",
theme="default",
allow_flagging="never"
)
# Launch the interface
if __name__ == "__main__":
interface.launch() |