File size: 7,880 Bytes
bfc1cf6
 
 
ef21c2f
bfc1cf6
 
109daa0
bfc1cf6
ef21c2f
 
 
bfc1cf6
109daa0
 
 
e6857f6
109daa0
e6857f6
 
109daa0
e6857f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fca8de1
e6857f6
109daa0
e6857f6
 
 
 
 
 
 
 
 
 
 
 
 
 
109daa0
 
 
fca8de1
ef21c2f
bfc1cf6
e6857f6
 
 
 
 
 
ef21c2f
bfc1cf6
e6857f6
 
 
 
 
 
 
 
fca8de1
e6857f6
fca8de1
 
 
 
e6857f6
 
 
 
fca8de1
e6857f6
fca8de1
 
 
bfc1cf6
ef21c2f
fca8de1
 
e6857f6
ef21c2f
 
 
 
fca8de1
e6857f6
ef21c2f
 
 
 
 
fca8de1
ef21c2f
fca8de1
 
 
 
 
e6857f6
 
 
bfc1cf6
 
 
 
 
 
 
fca8de1
bfc1cf6
 
 
fca8de1
ef21c2f
fca8de1
ef21c2f
 
fca8de1
ef21c2f
bfc1cf6
fca8de1
e6857f6
 
 
 
 
 
 
 
 
 
 
 
ef21c2f
e6857f6
ef21c2f
 
bfc1cf6
 
ef21c2f
 
 
bfc1cf6
 
ef21c2f
 
bfc1cf6
 
fca8de1
 
 
bfc1cf6
 
 
 
91aaf8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import gradio as gr
from anthropic import Anthropic
import wolframalpha
from datetime import datetime, timedelta
from collections import deque
import re

# Initialize clients
anthropic = Anthropic(api_key=os.environ.get('ANTHROPIC_API_KEY'))
wolfram_client = wolframalpha.Client(os.environ.get('WOLFRAM_APPID'))

def parse_questions(content):
    """Parse questions and their solutions from Claude's output"""
    questions = []
    current_question = {}
    
    # Split content into lines for more reliable parsing
    lines = content.split('\n')
    
    for line in lines:
        # Start of new question
        if re.match(r'^\s*\d+\)', line):
            if current_question:
                questions.append(current_question)
            current_question = {
                'number': re.match(r'^\s*(\d+)\)', line).group(1),
                'problem': line.split(')', 1)[1].strip(),
                'solution': '',
                'final_answer': None
            }
        # Solution marker
        elif 'Solution:' in line and current_question:
            current_question['problem'] = current_question['problem'].strip()
            current_question['solution'] = line.split('Solution:', 1)[1].strip()
        # Add to current problem or solution
        elif current_question:
            if current_question['solution']:
                current_question['solution'] += '\n' + line
            else:
                current_question['problem'] += '\n' + line
                
        # Extract final answer
        if current_question and 'final answer' in line.lower():
            matches = re.findall(r'[-+]?(?:\d*\.)?\d+', line)
            if matches:
                current_question['final_answer'] = matches[-1]
    
    # Add last question
    if current_question:
        questions.append(current_question)
    
    # Clean up questions
    for q in questions:
        q['problem'] = q['problem'].strip()
        q['solution'] = q['solution'].strip()
    
    return questions

def verify_solution(problem, answer):
    """Verify a mathematical solution using Wolfram Alpha"""
    try:
        # Clean up the problem for Wolfram Alpha
        query = problem.replace('$$', '').replace('$', '')
        # Remove any text instructions, keep only the mathematical expression
        query = re.sub(r'(?i)find|calculate|solve|evaluate|determine', '', query)
        query = query.strip()
        
        result = wolfram_client.query(query)
        
        if not result.success:
            return {
                'verified': False,
                'wolfram_solution': None,
                'error': "Wolfram Alpha could not process the query"
            }
        
        # Look for numerical results in multiple pods
        for pod in result.pods:
            if pod.title in ['Result', 'Solution', 'Numerical result', 'Decimal approximation']:
                wolfram_answer = pod.text
                # Extract numerical value
                wolfram_nums = re.findall(r'[-+]?(?:\d*\.)?\d+', wolfram_answer)
                if wolfram_nums:
                    wolfram_value = float(wolfram_nums[0])
                    user_value = float(answer)
                    # Allow for small numerical differences
                    is_verified = abs(wolfram_value - user_value) < 0.01
                    return {
                        'verified': is_verified,
                        'wolfram_solution': wolfram_answer,
                        'error': None
                    }
        
        return {
            'verified': False,
            'wolfram_solution': None,
            'error': "No numerical solution found in Wolfram Alpha response"
        }
    except Exception as e:
        return {
            'verified': False,
            'wolfram_solution': None,
            'error': f"Error during verification: {str(e)}"
        }

def generate_test(subject):
    """Generate and verify a math test"""
    try:
        system_prompt = """Generate 3 university-level math questions that can be verified numerically.
        For each question:
        1. Number the question as 1), 2), 3)
        2. State the problem clearly using simple $$ for displayed math
        3. Include "Solution:" before the solution
        4. Show step-by-step work
        5. End each solution with "Final answer = [number]"
        6. Keep problems relatively simple (basic calculus, algebra, etc.)
        7. Make sure problems have clear numerical answers
        8. Avoid word problems - focus on pure mathematical expressions"""
        
        message = anthropic.messages.create(
            model="claude-3-opus-20240229",
            max_tokens=1500,
            temperature=0.7,
            messages=[{
                "role": "user",
                "content": f"{system_prompt}\n\nWrite an exam for {subject} with simple numerical answers."
            }]
        )
        
        # Get the content and parse questions
        content = message.content[0].text
        questions = parse_questions(content)
        
        # Add verification results
        verification_note = "\n\n---\n## Solution Verification:\n"
        verification_results = []
        
        for q in questions:
            if q['final_answer'] is not None:
                result = verify_solution(q['problem'], q['final_answer'])
                verification_results.append(result)
                verification_note += f"\nQuestion {q['number']}:\n"
                if result['verified']:
                    verification_note += "✅ Solution verified by Wolfram Alpha\n"
                else:
                    verification_note += "⚠️ Solution needs verification\n"
                if result['wolfram_solution']:
                    verification_note += f"Wolfram Alpha result: {result['wolfram_solution']}\n"
                if result['error']:
                    verification_note += f"Note: {result['error']}\n"
            else:
                verification_note += f"\nQuestion {q['number']}:\n⚠️ Could not extract final answer\n"
        
        # Add usage statistics
        usage_stats = f"""
        \n---\nUsage Statistics:
        • Input Tokens: {message.usage.input_tokens:,}
        • Output Tokens: {message.usage.output_tokens:,}
        • Wolfram Alpha calls: {len(verification_results)}
        
        Cost Breakdown:
        • Claude Cost: ${((message.usage.input_tokens / 1000) * 0.015) + ((message.usage.output_tokens / 1000) * 0.075):.4f}
        • Wolfram API calls: {len(verification_results)}
        """
        
        # Combine everything with proper spacing
        final_output = content + "\n\n" + verification_note + usage_stats
        return final_output
            
    except Exception as e:
        return f"Error: {str(e)}"

subjects = [
    "Single Variable Calculus",
    "Multivariable Calculus", 
    "Linear Algebra",
    "Differential Equations",
    "Real Analysis",
    "Complex Analysis",
    "Abstract Algebra",
    "Probability Theory",
    "Numerical Analysis",
    "Topology"
]

# Create Gradio interface
interface = gr.Interface(
    fn=generate_test,
    inputs=gr.Dropdown(
        choices=subjects,
        label="Select Mathematics Subject",
        info="Choose a subject for the exam questions"
    ),
    outputs=gr.Markdown(
        label="Generated Test",
        latex_delimiters=[
            {"left": "$$", "right": "$$", "display": True},
            {"left": "$", "right": "$", "display": False}
        ]
    ),
    title="Advanced Mathematics Test Generator",
    description="""Generates university-level mathematics exam questions with solutions using Claude 3 Opus.
    Limited to 25 requests per day. Please use responsibly.""",
    theme="default",
    allow_flagging="never"
)

# Launch the interface
if __name__ == "__main__":
    interface.launch()