File size: 26,486 Bytes
bfc1cf6
 
 
 
 
2f3d61a
6439bc9
64d6a1c
 
56c0514
6439bc9
 
64d6a1c
 
 
 
6439bc9
bfc1cf6
2f3d61a
516fc47
 
 
 
 
2f3d61a
516fc47
 
3646962
 
 
 
 
add2681
3646962
 
 
 
 
 
 
406c0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3646962
 
 
 
406c0d6
3646962
 
406c0d6
 
 
 
3646962
 
406c0d6
 
 
 
 
 
 
 
 
 
 
 
 
3646962
 
 
 
 
 
 
406c0d6
 
 
 
3646962
 
 
406c0d6
 
 
 
 
3646962
406c0d6
3646962
 
 
406c0d6
3646962
 
 
 
406c0d6
3646962
406c0d6
 
 
3646962
 
406c0d6
 
3646962
 
 
406c0d6
 
 
 
3646962
406c0d6
3646962
 
 
 
 
 
 
406c0d6
 
 
 
3646962
2841710
 
 
 
 
 
 
 
 
 
 
 
2171ced
2841710
 
 
 
 
 
 
 
 
 
2171ced
2841710
 
 
 
 
 
 
 
 
 
2171ced
2841710
 
 
 
 
 
 
 
 
 
2171ced
2841710
 
 
 
 
 
 
 
 
 
 
 
 
63cea89
2841710
 
 
 
 
9682d40
 
6439bc9
 
6b1a461
 
 
6e9b3c0
6b1a461
 
6439bc9
 
 
6e9b3c0
 
 
6439bc9
 
 
 
 
 
 
9682d40
64d6a1c
 
 
 
 
 
 
 
 
 
 
 
 
ac1b43b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c515f30
ac1b43b
c515f30
ac1b43b
 
 
 
 
 
 
 
 
6e9b3c0
 
1871af1
6439bc9
 
 
 
6e9b3c0
6439bc9
 
 
 
 
 
6b1a461
e6857f6
6439bc9
bfc1cf6
2f3d61a
 
9682d40
 
2429022
 
 
 
 
 
 
2f3d61a
 
6e9b3c0
 
1871af1
2841710
ac1b43b
22e8e0a
ac1b43b
 
2429022
 
 
 
 
 
 
 
 
 
 
 
 
ac1b43b
 
 
2429022
 
 
 
 
 
 
 
 
 
 
 
 
63ad224
acfcd3f
 
7c9de68
e4c68f9
 
 
 
7c9de68
acfcd3f
 
e4c68f9
 
ac1b43b
 
2429022
 
 
 
 
 
ac1b43b
 
 
2429022
 
 
 
 
 
 
 
63ad224
acfcd3f
 
e4c68f9
 
 
 
acfcd3f
 
e4c68f9
7c9de68
 
 
 
 
 
 
 
 
 
 
e4c68f9
acfcd3f
f6e4af4
 
 
 
 
3646962
 
 
 
 
6439bc9
bfc1cf6
2841710
2a474e7
6b1a461
bfc1cf6
 
6e9b3c0
bfc1cf6
 
 
6439bc9
 
 
 
 
 
7748dcf
 
4a59421
bbf54a8
7748dcf
bbf54a8
 
 
 
 
 
 
6439bc9
9814205
 
 
6439bc9
64d6a1c
6e9b3c0
 
9814205
64d6a1c
9814205
64d6a1c
bfc1cf6
 
6e9b3c0
4a59421
9682d40
4a59421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6edca8
bbf54a8
 
 
 
 
 
b534e76
 
 
bbf54a8
b534e76
bbf54a8
1e97787
bbf54a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e4af4
bbf54a8
 
 
 
 
 
f6e4af4
 
 
 
 
 
 
 
bbf54a8
 
f6e4af4
 
91aaf8c
9682d40
6e9b3c0
 
 
9682d40
 
1871af1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e9b3c0
1871af1
 
 
 
 
 
 
 
2841710
1871af1
6e9b3c0
 
 
 
 
 
1871af1
 
6e9b3c0
9682d40
 
6e9b3c0
91aaf8c
 
 
 
9682d40
 
 
6e9b3c0
 
9682d40
 
6e9b3c0
1871af1
 
 
6e9b3c0
1871af1
6b1a461
9682d40
91aaf8c
 
6439bc9
2f3d61a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import os
import gradio as gr
from anthropic import Anthropic
from datetime import datetime, timedelta
from collections import deque
import random
import logging
import tempfile
from pathlib import Path
from sympy import *

# Set up logging
logging.basicConfig(
    level=logging.DEBUG,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Initialize Anthropic client
anthropic = Anthropic(
    api_key=os.environ.get('ANTHROPIC_API_KEY')
)

# Request tracking
MAX_REQUESTS_PER_DAY = 25
request_history = deque(maxlen=1000)

import json
from pathlib import Path

def load_proof_repository():
    """Load the proof repository from the repository file"""
    repo_path = Path("Lebl-theorems-all.json")
    try:
        with open(repo_path, "r") as f:
            return json.load(f)
    except Exception as e:
        logger.error(f"Error loading proof repository: {str(e)}")
        return None

TOPIC_MAPPINGS = {
    "integration": ["integral", "integrable", "riemann", "integrate", "antiderivative"],
    "continuity": ["continuous", "discontinuous", "discontinuity", "uniformly continuous"],
    "sequences": ["sequence", "convergent", "divergent", "monotone", "subsequence"],
    "series": ["series", "sum", "convergent series", "power series"],
    "differentiation": ["derivative", "differentiable", "differential"],
    "limits": ["limit", "cluster point", "accumulation"],
    "functions": ["function", "mapping", "surjective", "injective", "bijective"],
    "bounded": ["bound", "bounded above", "bounded below", "supremum", "infimum"]
}

def get_related_terms(topic):
    """Get all related terms for a given topic"""
    # Get direct mappings
    related = TOPIC_MAPPINGS.get(topic.lower(), [])
    # Add the original topic
    related.append(topic.lower())
    # Remove duplicates while preserving order
    return list(dict.fromkeys(related))

def matches_topic(text, topic_terms):
    """Check if any topic terms appear in the text"""
    text_lower = text.lower()
    return any(term in text_lower for term in topic_terms)

def get_relevant_proofs(topic):
    """Get relevant proofs from repository based on topic, randomly selecting examples"""
    repository = load_proof_repository()
    if not repository:
        logger.error("Failed to load proof repository")
        return []
    
    logger.debug(f"Searching for proofs related to topic: {topic}")
    topic_terms = get_related_terms(topic)
    logger.debug(f"Related terms: {topic_terms}")
    
    relevant_proofs = []
    for theorem in repository.get("dataset", {}).get("theorems", []):
        # Check categories
        categories = theorem.get("categories", [])
        category_match = any(matches_topic(cat, topic_terms) for cat in categories)
        
        # Check contents
        contents = theorem.get("contents", [])
        content_match = any(matches_topic(content, topic_terms) for content in contents)
        
        # Check title
        title = theorem.get("title", "")
        title_match = matches_topic(title, topic_terms)
        
        if (category_match or content_match or title_match):
            if theorem.get("contents") and theorem.get("proofs"):
                proof_content = {
                    "title": theorem.get("title", ""),
                    "contents": theorem.get("contents", []),
                    "proofs": [p.get("contents", []) for p in theorem.get("proofs", [])]
                }
                relevant_proofs.append(proof_content)
                logger.debug(f"Found matching proof: {proof_content['title']}")
                logger.debug(f"Matched via: {'categories' if category_match else 'contents' if content_match else 'title'}")

    logger.debug(f"Found {len(relevant_proofs)} relevant proofs before sampling")
    
    # Randomly select 3 proofs if we have more than 3
    if len(relevant_proofs) > 3:
        selected = random.sample(relevant_proofs, 3)
        logger.debug("Selected proofs for enhancement:")
        for proof in selected:
            logger.debug(f"- {proof['title']}")
        return selected
    return relevant_proofs
    
def enhance_prompt_with_proofs(system_prompt, subject, topic):
    """Enhance the system prompt with relevant proofs if subject is Real Analysis"""
    if subject != "Real Analysis":
        logger.debug("Skipping proof enhancement - not Real Analysis")
        return system_prompt
        
    relevant_proofs = get_relevant_proofs(topic)
    if not relevant_proofs:
        logger.debug(f"No relevant proofs found for topic: {topic}")
        return system_prompt
    
    logger.debug(f"Enhancing prompt with {len(relevant_proofs)} proofs")
    
    # Add proof examples to the prompt
    proof_examples = "\n\nReference these proof examples for style and approach:\n"
    for proof in relevant_proofs:
        logger.debug(f"Adding proof: {proof['title']}")
        proof_examples += f"\nTheorem: {proof['title']}\n"
        proof_examples += "Statement: " + " ".join(proof['contents']) + "\n"
        if proof['proofs']:
            first_proof = " ".join(proof['proofs'][0])
            logger.debug(f"Proof length: {len(first_proof)} characters")
            proof_examples += "Proof: " + first_proof + "\n"
    
    # Add specific instructions for using the examples
    enhanced_prompt = f"""{system_prompt}

ADDITIONAL PROOF GUIDELINES:
1. Consider the following proof examples from established textbooks
2. Maintain similar level of rigor and detail
3. Use similar proof techniques where applicable
4. Follow similar notation and presentation style

{proof_examples}"""
    
    return enhanced_prompt
    

def get_difficulty_parameters(difficulty_level):
    """Return specific parameters and constraints based on difficulty level"""
    parameters = {
        1: {  # Very Easy
            "description": "very easy, suitable for beginners",
            "constraints": [
                "Use only basic concepts and straightforward calculations",
                "Break complex problems into smaller, guided steps",
                "Provide hints within the question when needed",
                "Use simple numbers and avoid complex algebraic expressions"
            ],
            "example_style": "Similar to standard homework problems",
            "model": "claude-3-5-sonnet-20241022"
        },
        2: {  # Easy
            "description": "easy, but requiring some thought",
            "constraints": [
                "Use basic concepts with minor complications",
                "Include two-step problems",
                "Minimal guidance provided",
                "Use moderately complex numbers or expressions"
            ],
            "example_style": "Similar to quiz questions",
            "model": "claude-3-5-sonnet-20241022"
        },
        3: {  # Intermediate
            "description": "intermediate difficulty, testing deeper understanding",
            "constraints": [
                "Combine 2-3 related concepts",
                "Include some non-obvious solution paths",
                "Require multi-step reasoning",
                "Use moderate algebraic complexity"
            ],
            "example_style": "Similar to midterm exam questions",
            "model": "claude-3-5-sonnet-20241022"
        },
        4: {  # Difficult
            "description": "challenging, requiring strong mathematical maturity",
            "constraints": [
                "Combine multiple concepts creatively",
                "Require insight and deep understanding",
                "Include non-standard approaches",
                "Use sophisticated mathematical reasoning"
            ],
            "example_style": "Similar to final exam questions",
            "model": "claude-3-5-sonnet-20241022"
        },
        5: {  # Very Difficult
            "description": "very challenging, testing mastery and creativity at a graduate level",
            "constraints": [
                "Create novel applications of theoretical concepts",
                "Require graduate-level mathematical reasoning",
                "Combine multiple advanced topics in unexpected ways",
                "Demand creative problem-solving approaches",
                "Include rigorous proof construction",
                "Require synthesis across mathematical domains",
                "Test deep theoretical understanding"
            ],
            "example_style": "Similar to graduate qualifying exams or advanced competition problems",
            "model": "claude-3-5-sonnet-20241022"
        }
    }
    
    return parameters.get(difficulty_level)

def create_latex_document(content, questions_only=False):
    """Create a complete LaTeX document"""
    try:
        latex_header = r"""\documentclass{article}
\usepackage{amsmath,amssymb}
\usepackage[margin=1in]{geometry}
\begin{document}
\title{Mathematics Question}
\maketitle
"""
        latex_footer = r"\end{document}"
        
        if questions_only:
            # Modified to handle single question
            processed_content = content.split('Solution:')[0]
            content = processed_content
        
        full_document = f"{latex_header}\n{content}\n{latex_footer}"
        logger.debug(f"Created {'questions-only' if questions_only else 'full'} LaTeX document")
        return full_document
    except Exception as e:
        logger.error(f"Error creating LaTeX document: {str(e)}")
        raise

def save_to_temp_file(content, filename):
    """Save content to a temporary file and return the path"""
    try:
        temp_dir = Path(tempfile.gettempdir()) / "math_test_files"
        temp_dir.mkdir(exist_ok=True)
        file_path = temp_dir / filename
        file_path.write_text(content, encoding='utf-8')
        logger.debug(f"Saved content to temporary file: {file_path}")
        return str(file_path)
    except Exception as e:
        logger.error(f"Error saving temporary file: {str(e)}")
        raise

def get_problem_type_addition(question_type):
    """Return specific requirements based on problem type"""
    problem_type_additions = {
        "application": """
The application question MUST:
- Present a real-world scenario or practical problem
- Require modeling the situation mathematically
- Connect abstract mathematical concepts to concrete situations
- Include realistic context and data
- Require students to:
    1. Identify relevant mathematical concepts
    2. Translate the practical problem into mathematical terms
    3. Solve using appropriate mathematical techniques
    4. Interpret the results in the context of the original problem

Example contexts might include:
- Physics applications (motion, forces, work)
- Engineering scenarios (optimization, rates of change)
- Economics problems (cost optimization, growth models)
- Biological systems (population growth, reaction rates)
- Business applications (profit maximization, inventory management)
- Social science applications (demographic models, social network analysis)
- Data science applications (regression, statistical analysis)
""",
        "proof": """
The proof question MUST:
- Require a formal mathematical proof
- Focus on demonstrating logical reasoning
- Require justification for each step
- Emphasize theoretical understanding

The proof question MAY NOT:
- Include Real-world applications or scenarios
- Include Pure computation problems
- Ask only for numerical answers
""",
        "computation": """
The computation question MUST:
- Require specific algebraic calculations
- Focus on mathematical techniques
- Have concrete answers in the form of algebraic expressions (about half of questions) or numbers (about half of questions)
- Test procedural knowledge

The computation question MAY NOT:
- Include extended real-world applications or scenarios
- Ask for a proof
"""
    }
    return problem_type_additions.get(question_type, "")

def generate_question(subject, difficulty, question_type):
    """Generate a single math question"""
    try:
        if not os.environ.get('ANTHROPIC_API_KEY'):
            logger.error("Anthropic API key not found")
            return "Error: Anthropic API key not configured", None, None
        
        logger.debug(f"Generating {question_type} question for subject: {subject} at difficulty level: {difficulty}")
        
        # Check rate limit
        now = datetime.now()
        while request_history and (now - request_history[0]) > timedelta(days=1):
            request_history.popleft()
        if len(request_history) >= MAX_REQUESTS_PER_DAY:
            return "Daily request limit reached. Please try again tomorrow.", None, None
        
        request_history.append(now)
        
        topics = {
            "Single Variable Calculus": ["limits", "derivatives", "integrals", "series", "applications"],
            "Multivariable Calculus": ["partial derivatives", "multiple integrals", "vector fields", "optimization"],
            "Linear Algebra": ["matrices", "vector spaces", "eigenvalues", "linear transformations"],
            "Differential Equations": ["first order equations", "second order equations", "systems", "stability analysis"],
            "Real Analysis": ["sequences", "series", "continuity", "differentiation", "integration"],
            "Complex Analysis": ["complex functions", "analyticity", "contour integration", "residues"],
            "Abstract Algebra": ["groups", "rings", "fields", "homomorphisms"],
            "Probability Theory": ["probability spaces", "random variables", "distributions", "limit theorems"],
            "Numerical Analysis": ["approximation", "interpolation", "numerical integration", "error analysis"],
            "Topology": ["metric spaces", "continuity", "compactness", "connectedness"]
        }
        
        selected_topic = random.choice(topics.get(subject, ["general"]))
        logger.debug(f"Selected topic: {selected_topic}")
        
        difficulty_params = get_difficulty_parameters(difficulty)
        problem_type_addition = get_problem_type_addition(question_type)

        if difficulty == 5:
            system_prompt = f"""You are an expert mathematics professor creating a graduate-level exam question.
STRICT REQUIREMENTS:
1. Write exactly 1 graduate-level {question_type} question on {subject} covering {selected_topic}.
2. Advanced Difficulty Requirements:
   This question must be suitable for PhD qualifying exams or advanced competitions.
   MUST include:
   - Novel applications of theoretical concepts
   - Graduate-level mathematical reasoning
   - Unexpected connections between different areas of {subject}
   - Creative problem-solving approaches
   - Rigorous proof requirements where applicable
   
   Follow these specific constraints:
   {chr(10).join(f'   - {c}' for c in difficulty_params['constraints'])}
   
   {problem_type_addition}

3. Style Reference:
   Question should be {difficulty_params['example_style']}
4. The question MUST:
   - Bridge multiple mathematical domains
   - Require deep theoretical understanding
   - Test mastery of advanced concepts
   - Demand innovative solution approaches
5. For LaTeX formatting:
   - Use $ for inline math
   - Use $$ on separate lines for equations and solutions
   - Put each solution step on its own line in $$ $$
   - DO NOT use \\begin{{aligned}} or similar environments
6. Include a detailed solution with thorough explanations of advanced concepts used
7. Maintain clear, precise formatting
8. At the end of the LaTeX solution output, print SymPy code that you would use to solve or verify the main equations in the question.
9. When writing SymPy code to verify solutions:
   - Import specific functions like this: from sympy import Symbol, solve, limit, Abs, integrate
   - Use ONLY SymPy functions - do not use NumPy, SciPy, or other libraries
   - For numerical integration, use SymPy's integrate() instead of scipy.integrate.quad()
   - For any numerical computations, use SymPy's native functions
   - Always define symbolic variables using Symbol() before using them
   - Use Abs() for absolute value (not abs())
   - Include print statements for ALL calculations and results
   - Print intermediate steps and final answers
   - Print variable values after they are computed
   - Format numerical results using evalf() for decimal"""       
        else:
            system_prompt = f"""You are an expert mathematics professor creating a {difficulty_params['description']} exam question.
STRICT REQUIREMENTS:
1. Write exactly 1 {question_type} question on {subject} covering {selected_topic}.
2. Difficulty Level Guidelines:
   {difficulty_params['description'].upper()}
   Follow these specific constraints:
   {chr(10).join(f'   - {c}' for c in difficulty_params['constraints'])}
   
   {problem_type_addition}

3. Style Reference:
   Question should be {difficulty_params['example_style']}
4. For LaTeX formatting:
   - Use $ for inline math
   - Use $$ on separate lines for equations and solutions
   - Put each solution step on its own line in $$ $$
   - DO NOT use \\begin{{aligned}} or similar environments
5. Include a detailed solution
6. Maintain clear formatting
7. At the end of the LaTeX solution output, print SymPy code that you would use to solve or verify the main equations in the question.
8. When writing SymPy code to verify solutions:
   - Use ONLY SymPy functions - do not use NumPy, SciPy, or other libraries
   - For numerical integration, use SymPy's integrate() instead of scipy.integrate.quad()
   - For any numerical computations, use SymPy's native functions
   - Always define symbolic variables using Symbol() before using them
   - Include print statements for ALL calculations and results
   - Print intermediate steps and final answers
   - Print variable values after they are computed
   - Format numerical results using evalf() for decimal
9. When writing SymPy code to verify solutions:
   - Import specific functions like this: from sympy import Symbol, solve, limit, Abs, integrate
   - Use ONLY SymPy functions - do not use NumPy, SciPy, or other libraries
   - For numerical integration, use SymPy's integrate() instead of scipy.integrate.quad()
   - For any numerical computations, use SymPy's native functions
   - Always define symbolic variables using Symbol() before using them
   - Use Abs() for absolute value (not abs())
   - Include print statements for ALL calculations and results
   - Print intermediate steps and final answers
   - Print variable values after they are computed
   - Format numerical results using evalf() for decimal"""

#Consider
   #When writing SymPy code:
   #- Use FiniteSet(1, 2, 3) instead of Set([1, 2, 3]) for finite sets
   #- Import specific functions instead of using 'from sympy import *'
   #- Print results of each calculation step

   # Enhance the prompt with proof examples if applicable
        if subject == "Real Analysis" and question_type == "proof":
            system_prompt = enhance_prompt_with_proofs(system_prompt, subject, selected_topic)
    
        logger.debug("Sending request to Anthropic API")
        message = anthropic.messages.create(
            model=difficulty_params['model'],
            max_tokens=4096,
            temperature=0.7,
            messages=[{
                "role": "user",
                "content": f"{system_prompt}\n\nWrite a question for {subject}."
            }]
        )
        
        if not hasattr(message, 'content') or not message.content:
            logger.error("No content received from Anthropic API")
            return "Error: No content received from API", None, None
        
        response_text = message.content[0].text
        logger.debug("Successfully received response from Anthropic API")

        # Execute SymPy code and append results
        sympy_output = extract_and_run_sympy_code_simple(response_text)

        if sympy_output:
            # Check if SymPy ran successfully
            if "Error" not in sympy_output:
                resolution = check_and_resolve_discrepancy(response_text, sympy_output)
                response_text = f"{response_text}\n\nSymPy Verification Results:\n```\n{sympy_output}\n```\n\nVerification Analysis:\n{resolution}"
            else:
                # Just append SymPy results if there was an error
                response_text += f"\n\nSymPy Verification Results:\n```\n{sympy_output}\n```"
        
        # Create LaTeX content
        questions_latex = create_latex_document(response_text, questions_only=True)
        full_latex = create_latex_document(response_text, questions_only=False)
        
        # Save to temporary files
        questions_path = save_to_temp_file(questions_latex, "question.tex")
        full_path = save_to_temp_file(full_latex, "full_question.tex")
        
        logger.debug("Successfully created temporary files")
        
        return response_text, questions_path, full_path
            
    except Exception as e:
        logger.error(f"Error generating question: {str(e)}")
        return f"Error: {str(e)}", None, Non

def extract_and_run_sympy_code_simple(response_text):
    """
    Extract SymPy code from the response and execute it.
    Returns the output exactly as SymPy would produce it.
    """
    try:
        # Extract code
        sympy_start = response_text.find('```python')
        if sympy_start == -1:
            return "No SymPy code found in the response."
        
        code_start = response_text.find('\n', sympy_start) + 1
        code_end = response_text.find('```', code_start)
        if code_end == -1:
            return "Malformed SymPy code block."
        
        sympy_code = response_text[code_start:code_end].strip()
        
        # Set up basic SymPy environment
        import io
        import sympy
        from contextlib import redirect_stdout
        
        # Capture output
        output_buffer = io.StringIO()
        with redirect_stdout(output_buffer):
            exec(sympy_code, {"sympy": sympy, "print": print})
            
        return output_buffer.getvalue().strip() or "No output produced"
    
    except Exception as e:
        return f"Error executing SymPy code: {str(e)}"
               
def check_and_resolve_discrepancy(initial_response, sympy_output):
    """
    Compare the SymPy output with the initial response and resolve any discrepancies
    by making another API call to Claude.
    """
    try:
        resolution_prompt = f"""Here is a mathematics question with two answers.
        The first, called Original solution, is a complete solution.
        The second, called SymPy Verification, will only provide the final answer.
        
        If the SymPy Verification answer is consistent with the final answer Original solution,
        then please say that they are consistent and briefly explain why. 
        
        If the two answers are inconsistent with each other then please:

        1. Identify which solution is correct
        2. Explain the error in the incorrect solution
        3. Provide a revised complete solution that fixes any errors

Original solution:
{initial_response}

SymPy Verification Results:
{sympy_output}

Please maintain the same LaTeX formatting as the original solution."""

        # Make API call for resolution
        message = anthropic.messages.create(
            model="claude-3-5-sonnet-20241022",
            max_tokens=4096,
            temperature=0.2,
            messages=[{
                "role": "user",
                "content": resolution_prompt
            }]
        )
        
        resolution_text = message.content[0].text
        
        # Check if resolution contains new SymPy code
        if "```python" in resolution_text:
            new_sympy_output = extract_and_run_sympy_code(resolution_text)
            resolution_text += "\n\nNew SymPy Verification Results:\n```\n" + new_sympy_output + "\n```"
            
        return resolution_text
    except Exception as e:
        logger.error(f"Error in discrepancy resolution: {str(e)}")
        return initial_response
        
# Create Gradio interface
with gr.Blocks() as interface:
    gr.Markdown("# Advanced Mathematics Question Generator")
    gr.Markdown("""Generates a unique university-level mathematics question with solution using Claude 3.
    Each question features different topics and difficulty levels. Limited to 25 requests per day.""")
    
    with gr.Row():
        with gr.Column():
            subject_dropdown = gr.Dropdown(
                choices=[
                    "Single Variable Calculus",
                    "Multivariable Calculus", 
                    "Linear Algebra",
                    "Differential Equations",
                    "Real Analysis",
                    "Complex Analysis",
                    "Abstract Algebra",
                    "Probability Theory",
                    "Numerical Analysis",
                    "Topology"
                ],
                label="Select Mathematics Subject",
                info="Choose a subject for the question"
            )
            
            difficulty_slider = gr.Slider(
                minimum=1,
                maximum=5,
                step=1,
                value=3,
                label="Difficulty Level",
                info="1: Very Easy, 2: Easy, 3: Moderate, 4: Difficult, 5: Very Difficult"
            )
            
            question_type = gr.Radio(
                choices=["computation", "proof", "application"],
                label="Question Type",
                info="Select the type of question you want",
                value="computation"
            )
    
    generate_btn = gr.Button("Generate Question")
    
    output_text = gr.Markdown(
        label="Generated Question Preview",
        latex_delimiters=[
            {"left": "$$", "right": "$$", "display": True},
            {"left": "$", "right": "$", "display": False}
        ]
    )
    
    with gr.Row():
        questions_file = gr.File(label="Question Only (LaTeX)")
        full_file = gr.File(label="Question with Solution (LaTeX)")
    
    generate_btn.click(
        generate_question,
        inputs=[
            subject_dropdown,
            difficulty_slider,
            question_type
        ],
        outputs=[output_text, questions_file, full_file]
    )

if __name__ == "__main__":
    logger.info("Starting application")
    interface.launch()