Spaces:
Running
Running
File size: 18,902 Bytes
bfc1cf6 2f3d61a 6439bc9 64d6a1c 56c0514 6439bc9 64d6a1c 6439bc9 bfc1cf6 2f3d61a 516fc47 2f3d61a 516fc47 2841710 2171ced 2841710 2171ced 2841710 2171ced 2841710 2171ced 2841710 63cea89 2841710 9682d40 6439bc9 6b1a461 6e9b3c0 6b1a461 6439bc9 6e9b3c0 6439bc9 9682d40 64d6a1c ac1b43b c515f30 ac1b43b c515f30 ac1b43b 6e9b3c0 1871af1 6439bc9 6e9b3c0 6439bc9 6b1a461 e6857f6 6439bc9 bfc1cf6 2f3d61a 9682d40 2429022 2f3d61a 6e9b3c0 1871af1 2841710 ac1b43b 22e8e0a ac1b43b 2429022 ac1b43b 2429022 63ad224 b3ff73e ac1b43b 2429022 ac1b43b 2429022 63ad224 b3ff73e 2f3d61a 6439bc9 bfc1cf6 2841710 2a474e7 6b1a461 bfc1cf6 6e9b3c0 bfc1cf6 6439bc9 7748dcf 6439bc9 9814205 6439bc9 64d6a1c 6e9b3c0 9814205 64d6a1c 9814205 64d6a1c bfc1cf6 6e9b3c0 6b1a461 9682d40 56c0514 1e97787 56c0514 079e233 56c0514 9c08902 d38e732 209e476 d38e732 c3922cc d38e732 079e233 209e476 1e97787 56c0514 079e233 56c0514 d38e732 1e97787 079e233 d38e732 209e476 1e97787 56c0514 1e97787 d38e732 56c0514 1e97787 91aaf8c 9682d40 6e9b3c0 9682d40 1871af1 6e9b3c0 1871af1 2841710 1871af1 6e9b3c0 1871af1 6e9b3c0 9682d40 6e9b3c0 91aaf8c 9682d40 6e9b3c0 9682d40 6e9b3c0 1871af1 6e9b3c0 1871af1 6b1a461 9682d40 91aaf8c 6439bc9 2f3d61a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import os
import gradio as gr
from anthropic import Anthropic
from datetime import datetime, timedelta
from collections import deque
import random
import logging
import tempfile
from pathlib import Path
from sympy import *
# Set up logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Initialize Anthropic client
anthropic = Anthropic(
api_key=os.environ.get('ANTHROPIC_API_KEY')
)
# Request tracking
MAX_REQUESTS_PER_DAY = 25
request_history = deque(maxlen=1000)
def get_difficulty_parameters(difficulty_level):
"""Return specific parameters and constraints based on difficulty level"""
parameters = {
1: { # Very Easy
"description": "very easy, suitable for beginners",
"constraints": [
"Use only basic concepts and straightforward calculations",
"Break complex problems into smaller, guided steps",
"Provide hints within the question when needed",
"Use simple numbers and avoid complex algebraic expressions"
],
"example_style": "Similar to standard homework problems",
"model": "claude-3-5-sonnet-20241022"
},
2: { # Easy
"description": "easy, but requiring some thought",
"constraints": [
"Use basic concepts with minor complications",
"Include two-step problems",
"Minimal guidance provided",
"Use moderately complex numbers or expressions"
],
"example_style": "Similar to quiz questions",
"model": "claude-3-5-sonnet-20241022"
},
3: { # Intermediate
"description": "intermediate difficulty, testing deeper understanding",
"constraints": [
"Combine 2-3 related concepts",
"Include some non-obvious solution paths",
"Require multi-step reasoning",
"Use moderate algebraic complexity"
],
"example_style": "Similar to midterm exam questions",
"model": "claude-3-5-sonnet-20241022"
},
4: { # Difficult
"description": "challenging, requiring strong mathematical maturity",
"constraints": [
"Combine multiple concepts creatively",
"Require insight and deep understanding",
"Include non-standard approaches",
"Use sophisticated mathematical reasoning"
],
"example_style": "Similar to final exam questions",
"model": "claude-3-5-sonnet-20241022"
},
5: { # Very Difficult
"description": "very challenging, testing mastery and creativity at a graduate level",
"constraints": [
"Create novel applications of theoretical concepts",
"Require graduate-level mathematical reasoning",
"Combine multiple advanced topics in unexpected ways",
"Demand creative problem-solving approaches",
"Include rigorous proof construction",
"Require synthesis across mathematical domains",
"Test deep theoretical understanding"
],
"example_style": "Similar to graduate qualifying exams or advanced competition problems",
"model": "claude-3-5-sonnet-20241022"
}
}
return parameters.get(difficulty_level)
def create_latex_document(content, questions_only=False):
"""Create a complete LaTeX document"""
try:
latex_header = r"""\documentclass{article}
\usepackage{amsmath,amssymb}
\usepackage[margin=1in]{geometry}
\begin{document}
\title{Mathematics Question}
\maketitle
"""
latex_footer = r"\end{document}"
if questions_only:
# Modified to handle single question
processed_content = content.split('Solution:')[0]
content = processed_content
full_document = f"{latex_header}\n{content}\n{latex_footer}"
logger.debug(f"Created {'questions-only' if questions_only else 'full'} LaTeX document")
return full_document
except Exception as e:
logger.error(f"Error creating LaTeX document: {str(e)}")
raise
def save_to_temp_file(content, filename):
"""Save content to a temporary file and return the path"""
try:
temp_dir = Path(tempfile.gettempdir()) / "math_test_files"
temp_dir.mkdir(exist_ok=True)
file_path = temp_dir / filename
file_path.write_text(content, encoding='utf-8')
logger.debug(f"Saved content to temporary file: {file_path}")
return str(file_path)
except Exception as e:
logger.error(f"Error saving temporary file: {str(e)}")
raise
def get_problem_type_addition(question_type):
"""Return specific requirements based on problem type"""
problem_type_additions = {
"application": """
The application question MUST:
- Present a real-world scenario or practical problem
- Require modeling the situation mathematically
- Connect abstract mathematical concepts to concrete situations
- Include realistic context and data
- Require students to:
1. Identify relevant mathematical concepts
2. Translate the practical problem into mathematical terms
3. Solve using appropriate mathematical techniques
4. Interpret the results in the context of the original problem
Example contexts might include:
- Physics applications (motion, forces, work)
- Engineering scenarios (optimization, rates of change)
- Economics problems (cost optimization, growth models)
- Biological systems (population growth, reaction rates)
- Business applications (profit maximization, inventory management)
- Social science applications (demographic models, social network analysis)
- Data science applications (regression, statistical analysis)
""",
"proof": """
The proof question MUST:
- Require a formal mathematical proof
- Focus on demonstrating logical reasoning
- Require justification for each step
- Emphasize theoretical understanding
The proof question MAY NOT:
- Include Real-world applications or scenarios
- Include Pure computation problems
- Ask only for numerical answers
""",
"computation": """
The computation question MUST:
- Require specific algebraic calculations
- Focus on mathematical techniques
- Have concrete answers in the form of algebraic expressions (about half of questions) or numbers (about half of questions)
- Test procedural knowledge
The computation question MAY NOT:
- Include extended real-world applications or scenarios
- Ask for a proof
"""
}
return problem_type_additions.get(question_type, "")
def generate_question(subject, difficulty, question_type):
"""Generate a single math question"""
try:
if not os.environ.get('ANTHROPIC_API_KEY'):
logger.error("Anthropic API key not found")
return "Error: Anthropic API key not configured", None, None
logger.debug(f"Generating {question_type} question for subject: {subject} at difficulty level: {difficulty}")
# Check rate limit
now = datetime.now()
while request_history and (now - request_history[0]) > timedelta(days=1):
request_history.popleft()
if len(request_history) >= MAX_REQUESTS_PER_DAY:
return "Daily request limit reached. Please try again tomorrow.", None, None
request_history.append(now)
topics = {
"Single Variable Calculus": ["limits", "derivatives", "integrals", "series", "applications"],
"Multivariable Calculus": ["partial derivatives", "multiple integrals", "vector fields", "optimization"],
"Linear Algebra": ["matrices", "vector spaces", "eigenvalues", "linear transformations"],
"Differential Equations": ["first order equations", "second order equations", "systems", "stability analysis"],
"Real Analysis": ["sequences", "series", "continuity", "differentiation", "integration"],
"Complex Analysis": ["complex functions", "analyticity", "contour integration", "residues"],
"Abstract Algebra": ["groups", "rings", "fields", "homomorphisms"],
"Probability Theory": ["probability spaces", "random variables", "distributions", "limit theorems"],
"Numerical Analysis": ["approximation", "interpolation", "numerical integration", "error analysis"],
"Topology": ["metric spaces", "continuity", "compactness", "connectedness"]
}
selected_topic = random.choice(topics.get(subject, ["general"]))
logger.debug(f"Selected topic: {selected_topic}")
difficulty_params = get_difficulty_parameters(difficulty)
problem_type_addition = get_problem_type_addition(question_type)
if difficulty == 5:
system_prompt = f"""You are an expert mathematics professor creating a graduate-level exam question.
STRICT REQUIREMENTS:
1. Write exactly 1 graduate-level {question_type} question on {subject} covering {selected_topic}.
2. Advanced Difficulty Requirements:
This question must be suitable for PhD qualifying exams or advanced competitions.
MUST include:
- Novel applications of theoretical concepts
- Graduate-level mathematical reasoning
- Unexpected connections between different areas of {subject}
- Creative problem-solving approaches
- Rigorous proof requirements where applicable
Follow these specific constraints:
{chr(10).join(f' - {c}' for c in difficulty_params['constraints'])}
{problem_type_addition}
3. Style Reference:
Question should be {difficulty_params['example_style']}
4. The question MUST:
- Bridge multiple mathematical domains
- Require deep theoretical understanding
- Test mastery of advanced concepts
- Demand innovative solution approaches
5. For LaTeX formatting:
- Use $ for inline math
- Use $$ on separate lines for equations and solutions
- Put each solution step on its own line in $$ $$
- DO NOT use \\begin{{aligned}} or similar environments
6. Include a detailed solution with thorough explanations of advanced concepts used
7. Maintain clear, precise formatting
8. At the end of the LaTeX solution output, print SymPy code that you would use to solve or verify the main equations in the question. """
else:
system_prompt = f"""You are an expert mathematics professor creating a {difficulty_params['description']} exam question.
STRICT REQUIREMENTS:
1. Write exactly 1 {question_type} question on {subject} covering {selected_topic}.
2. Difficulty Level Guidelines:
{difficulty_params['description'].upper()}
Follow these specific constraints:
{chr(10).join(f' - {c}' for c in difficulty_params['constraints'])}
{problem_type_addition}
3. Style Reference:
Question should be {difficulty_params['example_style']}
4. For LaTeX formatting:
- Use $ for inline math
- Use $$ on separate lines for equations and solutions
- Put each solution step on its own line in $$ $$
- DO NOT use \\begin{{aligned}} or similar environments
5. Include a detailed solution
6. Maintain clear formatting
7. At the end of the LaTeX solution output, print SymPy code that you would use to solve or verify the main equations in the question."""
logger.debug("Sending request to Anthropic API")
message = anthropic.messages.create(
model=difficulty_params['model'],
max_tokens=4096,
temperature=0.7,
messages=[{
"role": "user",
"content": f"{system_prompt}\n\nWrite a question for {subject}."
}]
)
if not hasattr(message, 'content') or not message.content:
logger.error("No content received from Anthropic API")
return "Error: No content received from API", None, None
response_text = message.content[0].text
logger.debug("Successfully received response from Anthropic API")
# Execute SymPy code and append results
sympy_output = extract_and_run_sympy_code(response_text)
if sympy_output:
response_text += "\n\nSymPy Verification Results:\n```\n" + sympy_output + "```"
# Then continue with the existing code:
# Create LaTeX content
questions_latex = create_latex_document(response_text, questions_only=True)
full_latex = create_latex_document(response_text, questions_only=False)
# Create LaTeX content
questions_latex = create_latex_document(response_text, questions_only=True)
full_latex = create_latex_document(response_text, questions_only=False)
# Save to temporary files
questions_path = save_to_temp_file(questions_latex, "question.tex")
full_path = save_to_temp_file(full_latex, "full_question.tex")
logger.debug("Successfully created temporary files")
return response_text, questions_path, full_path
except Exception as e:
logger.error(f"Error generating question: {str(e)}")
return f"Error: {str(e)}", None, None
def extract_and_run_sympy_code(response_text):
"""
Extract SymPy code from the response and execute it.
Returns only the essential calculation results as a string.
Filters out debugging info and module imports.
"""
try:
# Find the SymPy code block
sympy_start = response_text.find('```python')
if sympy_start == -1:
return "No SymPy code found in the response."
# Extract the code (excluding the ```python and ``` markers)
code_start = response_text.find('\n', sympy_start) + 1
code_end = response_text.find('```', code_start)
if code_end == -1:
return "Malformed SymPy code block."
sympy_code = response_text[code_start:code_end].strip()
# Import necessary modules
import io
import sympy
from contextlib import redirect_stdout
# Create a string buffer to capture print output
output_buffer = io.StringIO()
# Create a clean globals dict with only essential SymPy components
sympy_globals = {
"Symbol": sympy.Symbol,
"symbols": sympy.symbols,
"solve": sympy.solve,
"integrate": sympy.integrate,
"diff": sympy.diff,
"limit": sympy.limit,
"sqrt": sympy.sqrt,
"simplify": sympy.simplify,
"expand": sympy.expand
}
# Create locals dict to capture new variables
local_vars = {}
# Execute the code and capture output
with redirect_stdout(output_buffer):
exec(sympy_code, sympy_globals, local_vars)
# Get the printed output
printed_output = output_buffer.getvalue().strip()
# Filter the local variables to only include calculation results
# Exclude built-in variables, modules, and functions
calculation_results = {
name: value for name, value in local_vars.items()
if (
not name.startswith('__') and
not hasattr(value, '__call__') and # Exclude functions
not hasattr(value, '__module__') # Exclude modules
)
}
# Build the final output string
result_parts = []
# Add any printed output first
if printed_output:
result_parts.append(printed_output)
# Add calculation results if there are any
if calculation_results:
if printed_output: # Add a separator if we already have printed output
result_parts.append("\nCalculation Results:")
result_parts.append("-" * 20)
for var_name, value in calculation_results.items():
result_parts.append(f"{var_name} = {value}")
# If we have no results at all, provide a message
if not result_parts:
return "No calculation results produced."
return "\n".join(result_parts)
except Exception as e:
return f"Error executing SymPy code: {str(e)}"
# Create Gradio interface
with gr.Blocks() as interface:
gr.Markdown("# Advanced Mathematics Question Generator")
gr.Markdown("""Generates a unique university-level mathematics question with solution using Claude 3.
Each question features different topics and difficulty levels. Limited to 25 requests per day.""")
with gr.Row():
with gr.Column():
subject_dropdown = gr.Dropdown(
choices=[
"Single Variable Calculus",
"Multivariable Calculus",
"Linear Algebra",
"Differential Equations",
"Real Analysis",
"Complex Analysis",
"Abstract Algebra",
"Probability Theory",
"Numerical Analysis",
"Topology"
],
label="Select Mathematics Subject",
info="Choose a subject for the question"
)
difficulty_slider = gr.Slider(
minimum=1,
maximum=5,
step=1,
value=3,
label="Difficulty Level",
info="1: Very Easy, 2: Easy, 3: Moderate, 4: Difficult, 5: Very Difficult"
)
question_type = gr.Radio(
choices=["computation", "proof", "application"],
label="Question Type",
info="Select the type of question you want",
value="computation"
)
generate_btn = gr.Button("Generate Question")
output_text = gr.Markdown(
label="Generated Question Preview",
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
]
)
with gr.Row():
questions_file = gr.File(label="Question Only (LaTeX)")
full_file = gr.File(label="Question with Solution (LaTeX)")
generate_btn.click(
generate_question,
inputs=[
subject_dropdown,
difficulty_slider,
question_type
],
outputs=[output_text, questions_file, full_file]
)
if __name__ == "__main__":
logger.info("Starting application")
interface.launch() |