Spaces:
Sleeping
Sleeping
File size: 10,245 Bytes
180d8ec 53da1d8 180d8ec de22604 180d8ec 4c98e23 180d8ec 14b59b2 53da1d8 180d8ec ef45508 04f6a57 de22604 ab410ee de22604 180d8ec ef45508 c26229d ec2d845 de22604 180d8ec 4c98e23 180d8ec 07e701b 180d8ec 07e701b 180d8ec 4c98e23 07e701b 4c98e23 de22604 73273a4 9c118e7 8cb462a 180d8ec 07e701b 180d8ec 4c98e23 180d8ec 07e701b 180d8ec 4c98e23 180d8ec 6922363 180d8ec ed1a9ce 1df9bbe fc2c761 1df9bbe fc2c761 180d8ec 8b1e0d6 180d8ec 8cb462a 180d8ec 51849a6 8cb462a c325a6d 8cb462a 180d8ec 8b1e0d6 180d8ec ed1a9ce 51849a6 8cb462a c325a6d 8cb462a ca6a630 78d8d32 180d8ec 9ca4933 1883c03 180d8ec 8408e1a 180d8ec 04f6a57 1883c03 04f6a57 9f04c37 de22604 180d8ec 677e6fc 180d8ec 9f04c37 180d8ec 8cb462a 180d8ec ef45508 180d8ec 9f04c37 04f6a57 ef45508 9f04c37 de22604 cb6f074 de22604 4367588 dd20b48 180d8ec de22604 180d8ec f4a34e2 04f6a57 f4a34e2 de22604 f4a34e2 180d8ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# %%
# imports
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# %%
# import data
data = pd.read_excel("graph_data.xlsx",
sheet_name = "Sheet1",
header = 0
)
# clean data
# rename year column
data = data.rename(columns = {"Unnamed: 0": "Year"})
# drop rows without data
# data = data.drop([0,1,2,3,4,5,6,7,8,9,10,11])
# keep columns of interest
data = data[[
"Year",
"Total Revenues",
"Debt Balance",
"Revenues ex SS OASDI",
"SS OASDI Revenues",
"Average Rate on Federal Debt",
"GDP",
"Net Interest"
]]
data.set_index("Year", inplace=True)
print(data)
# %%
baseline_interest_rate = 3.64
#baseline_revenues = 15928.73
baseline_cagr_revenues = 4.44
total_revenues_2024 = data.loc[2024, "Revenues ex SS OASDI"]
total_revenues_2055_bl = data.loc[2055, "Revenues ex SS OASDI"]
baseline_cagr_ssoasdi_revenues = 3.62
ssoasdi_revenues_2024 = data.loc[2024, "SS OASDI Revenues"]
ssoasdi_revenues_2055_bl = data.loc[2055, "SS OASDI Revenues"]
def plot_interest_coverage(interest_rate, cagr_revenues, cagr_ssoasdi_revenues):
# calculate the yearly increase in the interest rate based on the projected interest rate in 2054
interest_rate_yearly_increase = (interest_rate - baseline_interest_rate) / (2055 - 2025) / 100
# calculate the yearly increase in revenues based on the annual growth rate through 2055
total_revenues_2055 = total_revenues_2024 * ((1 + (cagr_revenues / 100)) ** (2055 - 2024))
revenues_yearly_increase = (total_revenues_2055 - total_revenues_2055_bl) / (2055 - 2025)
# calculate the yearly increase in ss oasdi revenues based on the annual growth rate through 2055
ssoasdi_revenues_2055 = ssoasdi_revenues_2024 * ((1 + (cagr_ssoasdi_revenues / 100)) ** (2055 - 2024))
ssoasdi_revenues_yearly_increase = (ssoasdi_revenues_2055 - ssoasdi_revenues_2055_bl) / (2055 - 2025)
# add a baseline net interest / revenues column
data["Net Interest / Revenues (Baseline)"] = data["Net Interest"] / data["Total Revenues"]
# add a baseline net interest / revenues ex SS OASDI column
data["Net Interest / Revenues ex SS OASDI (Baseline)"] = data["Net Interest"] / data["Revenues ex SS OASDI"]
# add a projected average rate on federal debt column
data["Average Rate on Federal Debt (Projected)"] = np.where(
data.index.astype(int) < 2025,
data["Average Rate on Federal Debt"],
data["Average Rate on Federal Debt"] + (interest_rate_yearly_increase * (data.index.astype(int) - 2024)))
# add a projected revenues ex SS OASDI column
data["Revenues ex SS OASDI (Projected)"] = np.where(
data.index.astype(int) < 2025,
data["Revenues ex SS OASDI"],
data["Revenues ex SS OASDI"] + (revenues_yearly_increase * (data.index.astype(int) - 2024)))
# add a projected SS OASDI revenues column
data["SS OASDI Revenues (Projected)"] = np.where(
data.index.astype(int) < 2025,
data["SS OASDI Revenues"],
data["SS OASDI Revenues"] + (ssoasdi_revenues_yearly_increase * (data.index.astype(int) - 2024)))
# add a projected revenues column
data["Total Revenues (Projected)"] = data["Revenues ex SS OASDI (Projected)"] + data["SS OASDI Revenues (Projected)"]
print(data.loc[2024:2030, ["Total Revenues", "Total Revenues (Projected)"]])
# add a projected interest / revenues column
data["Net Interest / Revenues (Projected)"] = np.where(
data.index.astype(int) < 2025,
data["Net Interest / Revenues (Baseline)"],
data["Average Rate on Federal Debt (Projected)"] * data["Debt Balance"] / data["Total Revenues (Projected)"])
# add a projected interest / revenues ex SS OASDI column
data["Net Interest / Revenues ex SS OASDI (Projected)"] = np.where(
data.index.astype(int) < 2025,
data["Net Interest / Revenues ex SS OASDI (Baseline)"],
data["Average Rate on Federal Debt (Projected)"] * data["Debt Balance"] / data["Revenues ex SS OASDI (Projected)"])
# Create the plot
plt.figure(figsize = (10, 4.8))
# plot average rate on federal debt
plt.plot(
data.index,
data["Average Rate on Federal Debt"],
color = "Green",
label = "Average Rate on Federal Debt"
)
# plot average rate on federal debt projected
if cagr_revenues != baseline_cagr_revenues or interest_rate != baseline_interest_rate:
plt.plot(
data.index,
data["Average Rate on Federal Debt (Projected)"],
color = "Green",
label = "Average Rate on Federal Debt (Projected)",
linestyle = "--"
)
else:
plt.plot(
data.index,
data["Average Rate on Federal Debt"],
color = "Green",
label = "Average Rate on Federal Debt (Projected)",
linestyle = "--"
)
# plot interest / revenues (baseline)
plt.plot(
data.index,
data["Net Interest / Revenues (Baseline)"],
color = "Blue",
label = "Net Interest / Revenues (Baseline)"
)
# plot interest / revenues (projected)
if cagr_revenues != baseline_cagr_revenues or interest_rate != baseline_interest_rate or cagr_ssoasdi_revenues != baseline_cagr_ssoasdi_revenues:
plt.plot(
data.index,
data["Net Interest / Revenues (Projected)"],
color = "Blue",
label = "Net Interest / Revenues (Projected)",
linestyle = "--"
)
else:
plt.plot(
data.index,
data["Net Interest / Revenues (Baseline)"],
color = "Blue",
label = "Net Interest / Revenues (Projected)",
linestyle = "--"
)
# plot interest / revenues ex ss oasdi (baseline)
plt.plot(
data.index,
data["Net Interest / Revenues ex SS OASDI (Baseline)"],
color = "Orange",
label = "Net Interest / Revenues ex SS OASDI (Baseline)"
)
# plot interest / revenues ex ss oasdi (projected)
# plot interest / revenues (projected)
if cagr_revenues != baseline_cagr_revenues or interest_rate != baseline_interest_rate:
plt.plot(
data.index,
data["Net Interest / Revenues ex SS OASDI (Projected)"],
color = "Orange",
label = "Net Interest / Revenues ex SS OASDI (Projected)",
linestyle = "--"
)
else:
plt.plot(
data.index,
data["Net Interest / Revenues ex SS OASDI (Baseline)"],
color = "Orange",
label = "Net Interest / Revenues ex SS OASDI (Projected)",
linestyle = "--"
)
plt.title("Interest as Share of Revenues Through 2055")
plt.legend(loc = "upper left")
plt.ylim(0, 1.05)
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xticks(range(1940,2055,4), rotation = 45)
plt.axvline(x = 2024.5, color = "black", linestyle = '--')
plt.grid(True, axis = 'y', linestyle = '--', linewidth = 0.7)
# Save the plot to a file
plt.savefig("interest_coverage.png")
plt.close()
# Return the path to the image file
return "interest_coverage.png"
# %%
interest_rate_lowerbound = 0
interest_rate_upperbound = 10
# revenues_lower_bound = 10000
# revenues_upper_bound = 20000
cagr_revenues_lower_bound = 0
cagr_revenues_upper_bound = 8
cagr_ssoasdi_revenues_lower_bound = 0
cagr_ssoasdi_revenues_upper_bound = 8
with gr.Blocks() as interface:
# Create the image output
graph = gr.Image(type="filepath", label = "Graph", value = plot_interest_coverage(baseline_interest_rate, baseline_cagr_revenues, baseline_cagr_ssoasdi_revenues))
# Create the slider input below the image for projected interest rate
interest_rate_slider = gr.Slider(
interest_rate_lowerbound,
interest_rate_upperbound,
step = .01,
value = baseline_interest_rate,
label = "2055 Projected Average Interest Rate on Federal Debt"
)
# Create the slider input below the image for projected revenues
cagr_revenues_slider = gr.Slider(
cagr_revenues_lower_bound,
cagr_revenues_upper_bound,
step = 0.01,
value = baseline_cagr_revenues,
label = "Compound Annual Growth Rate of Revenues through 2055"
)
# Create the slider input below the image for projected revenues
cagr_ssoasdi_revenues_slider = gr.Slider(
cagr_ssoasdi_revenues_lower_bound,
cagr_ssoasdi_revenues_upper_bound,
step = 0.01,
value = baseline_cagr_ssoasdi_revenues,
label = "Compound Annual Growth Rate of SS OASDI Revenues through 2055"
)
gr.Markdown('<p style="font-size:11px;">Source: : CBO March 2025, The Long-Term Budget Outlook: 2025 to 2055, author\'s ' \
'calculations from Supplemental Table 1. Scenario of higher interest rate and revenues '
'is author\'s calculations. Historical Social Security OASDI payroll tax revenue from Table 4-3 of the ' \
'Social Security Administration\'s Trust Fund Data, and projections from the CBO\'s August 2024 Long Term Projections '
'for Social Security.</p>')
# Set up an action that updates the graph when the interest rate slider value changes
interest_rate_slider.change(
plot_interest_coverage,
inputs = [interest_rate_slider, cagr_revenues_slider, cagr_ssoasdi_revenues_slider],
outputs = graph
)
# Set up an action that updates the graph when the revenues slider value changes
cagr_revenues_slider.change(
plot_interest_coverage,
inputs = [interest_rate_slider, cagr_revenues_slider, cagr_ssoasdi_revenues_slider],
outputs = graph
)
# Set up an action that updates the graph when the ssoasdi revenues slider value changes
cagr_ssoasdi_revenues_slider.change(
plot_interest_coverage,
inputs = [interest_rate_slider, cagr_revenues_slider, cagr_ssoasdi_revenues_slider],
outputs = graph
)
# Launch the interface
interface.launch(share = True)
|