Spaces:
Build error
Build error
Commit
·
d04cd0a
1
Parent(s):
a92daf2
working on pose
Browse files- inference/pose.py +168 -0
inference/pose.py
CHANGED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import torch
|
| 2 |
+
# import numpy as np
|
| 3 |
+
# from PIL import Image
|
| 4 |
+
# from torchvision import transforms
|
| 5 |
+
# from config import LABELS_TO_IDS
|
| 6 |
+
# from utils.vis_utils import visualize_mask_with_overlay
|
| 7 |
+
|
| 8 |
+
# # Example usage
|
| 9 |
+
# TASK = 'pose'
|
| 10 |
+
# VERSION = 'sapiens_1b'
|
| 11 |
+
|
| 12 |
+
# model_path = get_model_path(TASK, VERSION)
|
| 13 |
+
# print(model_path)
|
| 14 |
+
|
| 15 |
+
# model = torch.jit.load(model_path)
|
| 16 |
+
# model.eval()
|
| 17 |
+
# model.to("cuda")
|
| 18 |
+
|
| 19 |
+
# def get_pose(image, pose_estimator, input_shape=(3, 1024, 768), device="cuda"):
|
| 20 |
+
# # Preprocess the image
|
| 21 |
+
# img = preprocess_image(image, input_shape)
|
| 22 |
+
|
| 23 |
+
# # Run the model
|
| 24 |
+
# with torch.no_grad():
|
| 25 |
+
# heatmap = pose_estimator(img.to(device))
|
| 26 |
+
|
| 27 |
+
# # Post-process the output
|
| 28 |
+
# keypoints, keypoint_scores = udp_decode(heatmap[0].cpu().float().numpy(),
|
| 29 |
+
# input_shape[1:],
|
| 30 |
+
# (input_shape[1] // 4, input_shape[2] // 4))
|
| 31 |
+
|
| 32 |
+
# # Scale keypoints to original image size
|
| 33 |
+
# scale_x = image.width / input_shape[2]
|
| 34 |
+
# scale_y = image.height / input_shape[1]
|
| 35 |
+
# keypoints[:, 0] *= scale_x
|
| 36 |
+
# keypoints[:, 1] *= scale_y
|
| 37 |
+
|
| 38 |
+
# # Visualize the keypoints on the original image
|
| 39 |
+
# pose_image = visualize_keypoints(image, keypoints, keypoint_scores)
|
| 40 |
+
# return pose_image
|
| 41 |
+
|
| 42 |
+
# def preprocess_image(image, input_shape):
|
| 43 |
+
# # Resize and normalize the image
|
| 44 |
+
# img = image.resize((input_shape[2], input_shape[1]))
|
| 45 |
+
# img = np.array(img).transpose(2, 0, 1)
|
| 46 |
+
# img = torch.from_numpy(img).float()
|
| 47 |
+
# img = img[[2, 1, 0], ...] # RGB to BGR
|
| 48 |
+
# mean = torch.tensor([123.675, 116.28, 103.53]).view(3, 1, 1)
|
| 49 |
+
# std = torch.tensor([58.395, 57.12, 57.375]).view(3, 1, 1)
|
| 50 |
+
# img = (img - mean) / std
|
| 51 |
+
# return img.unsqueeze(0)
|
| 52 |
+
|
| 53 |
+
# def udp_decode(heatmap, img_size, heatmap_size):
|
| 54 |
+
# # This is a simplified version. You might need to implement the full UDP decode logic
|
| 55 |
+
# h, w = heatmap_size
|
| 56 |
+
# keypoints = np.zeros((heatmap.shape[0], 2))
|
| 57 |
+
# keypoint_scores = np.zeros(heatmap.shape[0])
|
| 58 |
+
|
| 59 |
+
# for i in range(heatmap.shape[0]):
|
| 60 |
+
# hm = heatmap[i]
|
| 61 |
+
# idx = np.unravel_index(np.argmax(hm), hm.shape)
|
| 62 |
+
# keypoints[i] = [idx[1] * img_size[1] / w, idx[0] * img_size[0] / h]
|
| 63 |
+
# keypoint_scores[i] = hm[idx]
|
| 64 |
+
|
| 65 |
+
# return keypoints, keypoint_scores
|
| 66 |
+
|
| 67 |
+
# def visualize_keypoints(image, keypoints, keypoint_scores, threshold=0.3):
|
| 68 |
+
# draw = ImageDraw.Draw(image)
|
| 69 |
+
# for (x, y), score in zip(keypoints, keypoint_scores):
|
| 70 |
+
# if score > threshold:
|
| 71 |
+
# draw.ellipse([(x-2, y-2), (x+2, y+2)], fill='red', outline='red')
|
| 72 |
+
# return image
|
| 73 |
+
|
| 74 |
+
# from utils.vis_utils import resize_image
|
| 75 |
+
# pil_image = Image.open('/home/user/app/assets/image.webp')
|
| 76 |
+
|
| 77 |
+
# if pil_image.mode == 'RGBA':
|
| 78 |
+
# pil_image = pil_image.convert('RGB')
|
| 79 |
+
|
| 80 |
+
# output_pose = get_pose(resized_pil_image, model)
|
| 81 |
+
|
| 82 |
+
# output_pose
|
| 83 |
+
import torch
|
| 84 |
+
import numpy as np
|
| 85 |
+
from PIL import Image, ImageDraw
|
| 86 |
+
from torchvision import transforms
|
| 87 |
+
from config import SAPIENS_LITE_MODELS_PATH
|
| 88 |
+
|
| 89 |
+
def load_model(task, version):
|
| 90 |
+
try:
|
| 91 |
+
model_path = SAPIENS_LITE_MODELS_PATH[task][version]
|
| 92 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 93 |
+
model = torch.jit.load(model_path)
|
| 94 |
+
model.eval()
|
| 95 |
+
model.to(device)
|
| 96 |
+
return model, device
|
| 97 |
+
except KeyError as e:
|
| 98 |
+
print(f"Error: Tarea o versión inválida. {e}")
|
| 99 |
+
return None, None
|
| 100 |
+
|
| 101 |
+
def preprocess_image(image, input_shape):
|
| 102 |
+
img = image.resize((input_shape[2], input_shape[1]))
|
| 103 |
+
img = np.array(img).transpose(2, 0, 1)
|
| 104 |
+
img = torch.from_numpy(img).float()
|
| 105 |
+
img = img[[2, 1, 0], ...] # RGB to BGR
|
| 106 |
+
mean = torch.tensor([123.675, 116.28, 103.53]).view(3, 1, 1)
|
| 107 |
+
std = torch.tensor([58.395, 57.12, 57.375]).view(3, 1, 1)
|
| 108 |
+
img = (img - mean) / std
|
| 109 |
+
return img.unsqueeze(0)
|
| 110 |
+
|
| 111 |
+
def udp_decode(heatmap, img_size, heatmap_size):
|
| 112 |
+
h, w = heatmap_size
|
| 113 |
+
keypoints = np.zeros((heatmap.shape[0], 2))
|
| 114 |
+
keypoint_scores = np.zeros(heatmap.shape[0])
|
| 115 |
+
|
| 116 |
+
for i in range(heatmap.shape[0]):
|
| 117 |
+
hm = heatmap[i]
|
| 118 |
+
idx = np.unravel_index(np.argmax(hm), hm.shape)
|
| 119 |
+
keypoints[i] = [idx[1] * img_size[1] / w, idx[0] * img_size[0] / h]
|
| 120 |
+
keypoint_scores[i] = hm[idx]
|
| 121 |
+
|
| 122 |
+
return keypoints, keypoint_scores
|
| 123 |
+
|
| 124 |
+
def visualize_keypoints(image, keypoints, keypoint_scores, threshold=0.3):
|
| 125 |
+
draw = ImageDraw.Draw(image)
|
| 126 |
+
for (x, y), score in zip(keypoints, keypoint_scores):
|
| 127 |
+
if score > threshold:
|
| 128 |
+
draw.ellipse([(x-2, y-2), (x+2, y+2)], fill='red', outline='red')
|
| 129 |
+
return image
|
| 130 |
+
|
| 131 |
+
def process_image_or_video(input_data, task='pose', version='sapiens_1b'):
|
| 132 |
+
model, device = load_model(task, version)
|
| 133 |
+
if model is None or device is None:
|
| 134 |
+
return None
|
| 135 |
+
|
| 136 |
+
input_shape = (3, 1024, 768)
|
| 137 |
+
|
| 138 |
+
def process_frame(frame):
|
| 139 |
+
if isinstance(frame, np.ndarray):
|
| 140 |
+
frame = Image.fromarray(frame)
|
| 141 |
+
|
| 142 |
+
if frame.mode == 'RGBA':
|
| 143 |
+
frame = frame.convert('RGB')
|
| 144 |
+
|
| 145 |
+
img = preprocess_image(frame, input_shape)
|
| 146 |
+
|
| 147 |
+
with torch.no_grad():
|
| 148 |
+
heatmap = model(img.to(device))
|
| 149 |
+
|
| 150 |
+
keypoints, keypoint_scores = udp_decode(heatmap[0].cpu().float().numpy(),
|
| 151 |
+
input_shape[1:],
|
| 152 |
+
(input_shape[1] // 4, input_shape[2] // 4))
|
| 153 |
+
|
| 154 |
+
scale_x = frame.width / input_shape[2]
|
| 155 |
+
scale_y = frame.height / input_shape[1]
|
| 156 |
+
keypoints[:, 0] *= scale_x
|
| 157 |
+
keypoints[:, 1] *= scale_y
|
| 158 |
+
|
| 159 |
+
pose_image = visualize_keypoints(frame, keypoints, keypoint_scores)
|
| 160 |
+
return pose_image
|
| 161 |
+
|
| 162 |
+
if isinstance(input_data, np.ndarray): # Video frame
|
| 163 |
+
return process_frame(input_data)
|
| 164 |
+
elif isinstance(input_data, Image.Image): # Imagen
|
| 165 |
+
return process_frame(input_data)
|
| 166 |
+
else:
|
| 167 |
+
print("Tipo de entrada no soportado. Por favor, proporcione una imagen PIL o un frame de video numpy.")
|
| 168 |
+
return None
|