joselobenitezg's picture
add normal
9930f16
raw
history blame
6.11 kB
# import torch
# import torch.nn.functional as F
# import numpy as np
# import cv2
# from PIL import Image
# from config import SAPIENS_LITE_MODELS_PATH
# # Example usage
# TASK = 'normal'
# VERSION = 'sapiens_0.3b'
# model_path = get_model_path(TASK, VERSION)
# print(model_path)
# model = torch.jit.load(model_path)
# model.eval()
# model.to("cuda")
# import torch
# import torch.nn.functional as F
# import numpy as np
# import cv2
# def get_normal(image, normal_model, input_shape=(3, 1024, 768), device="cuda"):
# # Preprocess the image
# img = preprocess_image(image, input_shape)
# # Run the model
# with torch.no_grad():
# result = normal_model(img.to(device))
# # Post-process the output
# normal_map = post_process_normal(result, (image.shape[0], image.shape[1]))
# # Visualize the normal map
# normal_image = visualize_normal(normal_map)
# return normal_image, normal_map
# def preprocess_image(image, input_shape):
# img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1)
# img = torch.from_numpy(img)
# img = img[[2, 1, 0], ...].float()
# mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1)
# std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1)
# img = (img - mean) / std
# return img.unsqueeze(0)
# def post_process_normal(result, original_shape):
# # Check the dimensionality of the result
# if result.dim() == 3:
# result = result.unsqueeze(0)
# elif result.dim() == 4:
# pass
# else:
# raise ValueError(f"Unexpected result dimension: {result.dim()}")
# # Ensure we're interpolating to the correct dimensions
# seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0)
# normal_map = seg_logits.float().cpu().numpy().transpose(1, 2, 0) # H x W x 3
# return normal_map
# def visualize_normal(normal_map):
# normal_map_norm = np.linalg.norm(normal_map, axis=-1, keepdims=True)
# normal_map_normalized = normal_map / (normal_map_norm + 1e-5) # Add a small epsilon to avoid division by zero
# # Convert to 0-255 range and BGR format for visualization
# normal_map_vis = ((normal_map_normalized + 1) / 2 * 255).astype(np.uint8)
# normal_map_vis = normal_map_vis[:, :, ::-1] # RGB to BGR
# return normal_map_vis
# def load_normal_model(checkpoint, use_torchscript=False):
# if use_torchscript:
# return torch.jit.load(checkpoint)
# else:
# model = torch.export.load(checkpoint).module()
# model = model.to("cuda")
# model = torch.compile(model, mode="max-autotune", fullgraph=True)
# return model
# import cv2
# import numpy as np
# # Load the model
# normal_model = load_normal_model(model_path, use_torchscript='_torchscript')
# # Load the image
# image = cv2.imread("/home/user/app/assets/image.webp")
# # Get the normal map and visualization
# normal_image, normal_map = get_normal(image, normal_model)
# # Save the results
# cv2.imwrite("output_normal_image.png", normal_image)
import torch
import torch.nn.functional as F
import numpy as np
import cv2
from PIL import Image
from config import SAPIENS_LITE_MODELS_PATH
def load_model(task, version):
try:
model_path = SAPIENS_LITE_MODELS_PATH[task][version]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.jit.load(model_path)
model.eval()
model.to(device)
return model, device
except KeyError as e:
print(f"Error: Tarea o versión inválida. {e}")
return None, None
def preprocess_image(image, input_shape):
img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1)
img = torch.from_numpy(img)
img = img[[2, 1, 0], ...].float()
mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1)
std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1)
img = (img - mean) / std
return img.unsqueeze(0)
def post_process_normal(result, original_shape):
if result.dim() == 3:
result = result.unsqueeze(0)
elif result.dim() == 4:
pass
else:
raise ValueError(f"Unexpected result dimension: {result.dim()}")
seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0)
normal_map = seg_logits.float().cpu().numpy().transpose(1, 2, 0) # H x W x 3
return normal_map
def visualize_normal(normal_map):
normal_map_norm = np.linalg.norm(normal_map, axis=-1, keepdims=True)
normal_map_normalized = normal_map / (normal_map_norm + 1e-5) # Add a small epsilon to avoid division by zero
normal_map_vis = ((normal_map_normalized + 1) / 2 * 255).astype(np.uint8)
normal_map_vis = normal_map_vis[:, :, ::-1] # RGB to BGR
return normal_map_vis
def process_image_or_video(input_data, task='normal', version='sapiens_0.3b'):
model, device = load_model(task, version)
if model is None or device is None:
return None
input_shape = (3, 1024, 768)
def process_frame(frame):
if isinstance(frame, Image.Image):
frame = np.array(frame)
if frame.shape[2] == 4: # RGBA
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
img = preprocess_image(frame, input_shape)
with torch.no_grad():
result = model(img.to(device))
normal_map = post_process_normal(result, (frame.shape[0], frame.shape[1]))
normal_image = visualize_normal(normal_map)
return Image.fromarray(cv2.cvtColor(normal_image, cv2.COLOR_BGR2RGB))
if isinstance(input_data, np.ndarray): # Video frame
return process_frame(input_data)
elif isinstance(input_data, Image.Image): # Imagen
return process_frame(input_data)
else:
print("Tipo de entrada no soportado. Por favor, proporcione una imagen PIL o un frame de video numpy.")
return None