Update app.py
Browse files
app.py
CHANGED
@@ -17,70 +17,21 @@ from PIL import Image
|
|
17 |
tokenizer = RobertaTokenizer.from_pretrained("microsoft/graphcodebert-base", cache_dir="models/")
|
18 |
model = RobertaModel.from_pretrained("microsoft/graphcodebert-base", cache_dir="models/")
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
"Bubble_Sort": """
|
23 |
-
def bubble_sort(arr):
|
24 |
n = len(arr)
|
25 |
for i in range(n):
|
26 |
for j in range(0, n-i-1):
|
27 |
if arr[j] > arr[j+1]:
|
28 |
arr[j], arr[j+1] = arr[j+1], arr[j]
|
29 |
-
return arr
|
30 |
-
""",
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
if arr[j] < arr[min_idx]:
|
38 |
-
min_idx = j
|
39 |
-
arr[i], arr[min_idx] = arr[min_idx], arr[i]
|
40 |
-
return arr
|
41 |
-
""",
|
42 |
-
|
43 |
-
"Insertion_Sort": """
|
44 |
-
def insertion_sort(arr):
|
45 |
-
for i in range(1, len(arr)):
|
46 |
-
key = arr[i]
|
47 |
-
j = i-1
|
48 |
-
while j >= 0 and key < arr[j]:
|
49 |
-
arr[j + 1] = arr[j]
|
50 |
-
j -= 1
|
51 |
-
arr[j + 1] = key
|
52 |
-
return arr
|
53 |
-
""",
|
54 |
-
|
55 |
-
"Merge_Sort": """
|
56 |
-
def merge_sort(arr):
|
57 |
-
if len(arr) > 1:
|
58 |
-
mid = len(arr) // 2
|
59 |
-
L = arr[:mid]
|
60 |
-
R = arr[mid:]
|
61 |
-
merge_sort(L)
|
62 |
-
merge_sort(R)
|
63 |
-
i = j = k = 0
|
64 |
-
while i < len(L) and j < len(R):
|
65 |
-
if L[i] < R[j]:
|
66 |
-
arr[k] = L[i]
|
67 |
-
i += 1
|
68 |
-
else:
|
69 |
-
arr[k] = R[j]
|
70 |
-
j += 1
|
71 |
-
k += 1
|
72 |
-
while i < len(L):
|
73 |
-
arr[k] = L[i]
|
74 |
-
i += 1
|
75 |
-
k += 1
|
76 |
-
while j < len(R):
|
77 |
-
arr[k] = R[j]
|
78 |
-
j += 1
|
79 |
-
k += 1
|
80 |
-
return arr
|
81 |
-
""",
|
82 |
|
83 |
-
"Quick_Sort": """
|
84 |
def partition(arr, low, high):
|
85 |
i = (low - 1)
|
86 |
pivot = arr[high]
|
@@ -89,15 +40,7 @@ def partition(arr, low, high):
|
|
89 |
i += 1
|
90 |
arr[i], arr[j] = arr[j], arr[i]
|
91 |
arr[i+1], arr[high] = arr[high], arr[i+1]
|
92 |
-
return (i + 1)
|
93 |
-
def quick_sort(arr, low, high):
|
94 |
-
if low < high:
|
95 |
-
pi = partition(arr, low, high)
|
96 |
-
quick_sort(arr, low, pi - 1)
|
97 |
-
quick_sort(arr, pi + 1, high)
|
98 |
-
return arr
|
99 |
-
"""
|
100 |
-
}
|
101 |
|
102 |
# Get token embeddings for a code snippet
|
103 |
def get_token_embeddings(code):
|
@@ -109,10 +52,7 @@ def get_token_embeddings(code):
|
|
109 |
return token_embeddings, tokens
|
110 |
|
111 |
# Plot comparison between two algorithms
|
112 |
-
def compare_algorithms(
|
113 |
-
code1 = sorting_algorithms[algo1_name]
|
114 |
-
code2 = sorting_algorithms[algo2_name]
|
115 |
-
|
116 |
emb1, tokens1 = get_token_embeddings(code1)
|
117 |
emb2, tokens2 = get_token_embeddings(code2)
|
118 |
|
@@ -121,8 +61,8 @@ def compare_algorithms(algo1_name, algo2_name):
|
|
121 |
coords = pca.fit_transform(combined)
|
122 |
|
123 |
plt.figure(figsize=(6, 5), dpi=150)
|
124 |
-
plt.scatter(coords[:len(tokens1), 0], coords[:len(tokens1), 1], color='red', label=
|
125 |
-
plt.scatter(coords[len(tokens1):, 0], coords[len(tokens1):, 1], color='blue', label=
|
126 |
plt.legend()
|
127 |
plt.xticks([]); plt.yticks([]); plt.grid(False)
|
128 |
|
@@ -136,15 +76,16 @@ def compare_algorithms(algo1_name, algo2_name):
|
|
136 |
interface = gr.Interface(
|
137 |
fn=compare_algorithms,
|
138 |
inputs=[
|
139 |
-
gr.
|
140 |
-
gr.
|
141 |
],
|
142 |
outputs=gr.Image(type="pil", label="Token Embedding PCA"),
|
143 |
title="GraphCodeBERT Token Embedding Comparison",
|
144 |
-
description="
|
145 |
)
|
146 |
|
147 |
if __name__ == "__main__":
|
148 |
interface.launch()
|
149 |
|
150 |
|
|
|
|
17 |
tokenizer = RobertaTokenizer.from_pretrained("microsoft/graphcodebert-base", cache_dir="models/")
|
18 |
model = RobertaModel.from_pretrained("microsoft/graphcodebert-base", cache_dir="models/")
|
19 |
|
20 |
+
# Default sorting algorithm code snippets
|
21 |
+
default_code_1 = """def bubble_sort(arr):
|
|
|
|
|
22 |
n = len(arr)
|
23 |
for i in range(n):
|
24 |
for j in range(0, n-i-1):
|
25 |
if arr[j] > arr[j+1]:
|
26 |
arr[j], arr[j+1] = arr[j+1], arr[j]
|
27 |
+
return arr"""
|
|
|
28 |
|
29 |
+
default_code_2 = """def quick_sort(arr, low, high):
|
30 |
+
if low < high:
|
31 |
+
pi = partition(arr, low, high)
|
32 |
+
quick_sort(arr, low, pi - 1)
|
33 |
+
quick_sort(arr, pi + 1, high)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
35 |
def partition(arr, low, high):
|
36 |
i = (low - 1)
|
37 |
pivot = arr[high]
|
|
|
40 |
i += 1
|
41 |
arr[i], arr[j] = arr[j], arr[i]
|
42 |
arr[i+1], arr[high] = arr[high], arr[i+1]
|
43 |
+
return (i + 1)"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# Get token embeddings for a code snippet
|
46 |
def get_token_embeddings(code):
|
|
|
52 |
return token_embeddings, tokens
|
53 |
|
54 |
# Plot comparison between two algorithms
|
55 |
+
def compare_algorithms(code1, code2):
|
|
|
|
|
|
|
56 |
emb1, tokens1 = get_token_embeddings(code1)
|
57 |
emb2, tokens2 = get_token_embeddings(code2)
|
58 |
|
|
|
61 |
coords = pca.fit_transform(combined)
|
62 |
|
63 |
plt.figure(figsize=(6, 5), dpi=150)
|
64 |
+
plt.scatter(coords[:len(tokens1), 0], coords[:len(tokens1), 1], color='red', label="Code 1", s=20)
|
65 |
+
plt.scatter(coords[len(tokens1):, 0], coords[len(tokens1):, 1], color='blue', label="Code 2", s=20)
|
66 |
plt.legend()
|
67 |
plt.xticks([]); plt.yticks([]); plt.grid(False)
|
68 |
|
|
|
76 |
interface = gr.Interface(
|
77 |
fn=compare_algorithms,
|
78 |
inputs=[
|
79 |
+
gr.Textbox(lines=15, label="Code 1", value=default_code_1, language="python"),
|
80 |
+
gr.Textbox(lines=15, label="Code 2", value=default_code_2, language="python")
|
81 |
],
|
82 |
outputs=gr.Image(type="pil", label="Token Embedding PCA"),
|
83 |
title="GraphCodeBERT Token Embedding Comparison",
|
84 |
+
description="Edit or paste two Python code snippets. This tool compares their token-level embeddings using GraphCodeBERT and PCA."
|
85 |
)
|
86 |
|
87 |
if __name__ == "__main__":
|
88 |
interface.launch()
|
89 |
|
90 |
|
91 |
+
|