test_api / app.py
jonathanjordan21's picture
Update app.py
323be74 verified
raw
history blame
1.94 kB
from fastapi import FastAPI, Request
from huggingface_hub import HfApi
from langchain_community.vectorstores.faiss import FAISS
from langchain_community.embeddings import OllamaEmbeddings
import os
app = FastAPI()
@app.get("/")
def greet_json():
with open("test.txt", "w") as f:
f.write("HELLO WORLD")
api = HfApi()
api.upload_file(
path_or_fileobj="test.txt",
path_in_repo="test.txt",
repo_id="jonathanjordan21/test-dataset",
repo_type="dataset",
token = os.getenv("HF_WRITE_TOKEN")
)
return {"Hello": "World!"}
@app.get("/{rand_int}/")
async def main(rand_int: str, request: Request):
with open("test.txt", "w") as f:
f.write(rand_int)
api = HfApi()
api.upload_file(
path_or_fileobj="test.txt",
path_in_repo="test.txt",
repo_id="jonathanjordan21/test-dataset",
repo_type="dataset",
token = os.getenv("HF_WRITE_TOKEN")
)
return {"raw_url": str(request.url), "message":rand_int}
@app.get("/vecs/vecs")
async def main2(request: Request):
emb = OllamaEmbeddings(model="intfloat/multilingual-e5-large-instruct",
base_url="https://lintasmediadanawa-hf-llm-api.hf.space",
embed_instruction="",
query_instruction="Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery: ",
headers={"Authorization": f"Bearer {os.getenv("HF_WRITE_TOKEN")}"},
)
vecs = FAISS.from_texts(["haha"], emb)
api = HfApi()
vecs.save_local("faiss_index")
api.upload_folder(
folder_path="faiss_index",
repo_id="jonathanjordan21/test-dataset",
path_in_repo="vecs/faiss_index",
repo_type="dataset",
token = os.getenv("HF_WRITE_TOKEN")
)
return {"raw_url": str(request.url)}