import gradio as gr from huggingface_hub import InferenceClient import spaces import torch import os from huggingface_hub import login from PIL import Image from transformers import AutoProcessor, Gemma3ForConditionalGeneration """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") duration=None login(token = os.getenv('gemma')) ckpt = "google/gemma-3-4b-it" model = Gemma3ForConditionalGeneration.from_pretrained( ckpt, device_map="auto", torch_dtype=torch.bfloat16, ) processor = AutoProcessor.from_pretrained(ckpt) # image = Image.open(requests.get(url, stream=True).raw) # prompt = " in this image, there is" # model_inputs = processor(text=prompt, images=image, return_tensors="pt") # input_len = model_inputs["input_ids"].shape[-1] # with torch.inference_mode(): # generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False) # generation = generation[0][input_len:] @spaces.GPU(duration=duration) def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p,): # messages = [{"role": "system", "content": system_message}] messages = [{ "role": "user", "content": [ {"type": "image", "url": "https://huggingface.co/spaces/big-vision/paligemma-hf/resolve/main/examples/password.jpg"}, {"type": "text", "text": "What is the password?"} ]}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" # for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p,): # token = message.choices[0].delta.content # response += token # yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, textbox=gr.MultimodalTextbox(), multimodal=True, stop_btn="Stop generation", additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()