Create app-backup.py
Browse files- app-backup.py +114 -0
app-backup.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fitz # PyMuPDF for PDF extraction
|
2 |
+
import re
|
3 |
+
import unsloth
|
4 |
+
import os
|
5 |
+
from huggingface_hub import login
|
6 |
+
from datasets import Dataset
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
8 |
+
from peft import LoraConfig, get_peft_model
|
9 |
+
import gradio as gr
|
10 |
+
from transformers import pipeline
|
11 |
+
|
12 |
+
|
13 |
+
def extract_text_from_pdf(pdf_path):
|
14 |
+
"""Extract text from a PDF file"""
|
15 |
+
doc = fitz.open(pdf_path)
|
16 |
+
text = "\n".join([page.get_text("text") for page in doc])
|
17 |
+
return text.strip()
|
18 |
+
|
19 |
+
def preprocess_text(text):
|
20 |
+
"""Basic text preprocessing"""
|
21 |
+
return re.sub(r"\s+", " ", text).strip()
|
22 |
+
|
23 |
+
pdf_text = extract_text_from_pdf("new-american-standard-bible.pdf")
|
24 |
+
clean_text = preprocess_text(pdf_text)
|
25 |
+
|
26 |
+
|
27 |
+
# Read the Hugging Face token from environment variables
|
28 |
+
hf_token = os.getenv("access_token")
|
29 |
+
|
30 |
+
if hf_token is None:
|
31 |
+
raise ValueError("'access_token' is not set. Add it as a secret variable in Hugging Face Spaces.")
|
32 |
+
|
33 |
+
# Log in to Hugging Face
|
34 |
+
login(token=hf_token)
|
35 |
+
|
36 |
+
#model_name = "meta-llama/Llama-2-7b-hf" # You can use a smaller one like "meta-llama/Llama-2-7b-chat-hf"
|
37 |
+
model_name = "unsloth/llama-2-7b-chat"
|
38 |
+
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
40 |
+
|
41 |
+
# Create dataset
|
42 |
+
data = {"text": [clean_text]}
|
43 |
+
dataset = Dataset.from_dict(data)
|
44 |
+
|
45 |
+
# Set a padding token manually
|
46 |
+
tokenizer.pad_token = tokenizer.eos_token # Use EOS as PAD token
|
47 |
+
# Alternatively, add a new custom pad token
|
48 |
+
# tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
49 |
+
|
50 |
+
# Tokenization function
|
51 |
+
def tokenize_function(examples):
|
52 |
+
tokens = tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
|
53 |
+
tokens["labels"] = tokens["input_ids"].copy() # Use input as labels for text generation
|
54 |
+
return tokens
|
55 |
+
|
56 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
57 |
+
|
58 |
+
# Load LLaMA 2 model in 4-bit mode to save memory
|
59 |
+
model = AutoModelForCausalLM.from_pretrained(
|
60 |
+
model_name,
|
61 |
+
load_in_4bit=True, # Use 4-bit quantization for efficiency
|
62 |
+
device_map="auto"
|
63 |
+
#device_map="cpu",
|
64 |
+
#quantization_config=None
|
65 |
+
)
|
66 |
+
|
67 |
+
# Apply LoRA (efficient fine-tuning)
|
68 |
+
lora_config = LoraConfig(
|
69 |
+
r=8, # Low-rank parameter
|
70 |
+
lora_alpha=32,
|
71 |
+
target_modules=["q_proj", "v_proj"], # Applies only to attention layers
|
72 |
+
lora_dropout=0.05
|
73 |
+
)
|
74 |
+
|
75 |
+
model = get_peft_model(model, lora_config)
|
76 |
+
|
77 |
+
training_args = TrainingArguments(
|
78 |
+
output_dir="./results",
|
79 |
+
evaluation_strategy="no", # Disable evaluation (to enable, change value to 'epoch')
|
80 |
+
learning_rate=2e-4,
|
81 |
+
per_device_train_batch_size=1, # Reduce batch size for memory efficiency
|
82 |
+
per_device_eval_batch_size=1,
|
83 |
+
num_train_epochs=3,
|
84 |
+
weight_decay=0.01,
|
85 |
+
save_strategy="epoch",
|
86 |
+
logging_dir="./logs",
|
87 |
+
logging_steps=10,
|
88 |
+
)
|
89 |
+
|
90 |
+
trainer = Trainer(
|
91 |
+
model=model,
|
92 |
+
args=training_args,
|
93 |
+
train_dataset=tokenized_datasets,
|
94 |
+
tokenizer=tokenizer,
|
95 |
+
)
|
96 |
+
|
97 |
+
def perform_training():
|
98 |
+
trainer.train()
|
99 |
+
|
100 |
+
perform_training()
|
101 |
+
|
102 |
+
model.save_pretrained("./fine_tuned_llama2")
|
103 |
+
tokenizer.save_pretrained("./fine_tuned_llama2")
|
104 |
+
|
105 |
+
|
106 |
+
# CHATBOT START
|
107 |
+
chatbot = pipeline("text-generation", model="./fine_tuned_llama2")
|
108 |
+
|
109 |
+
def chatbot_response(prompt):
|
110 |
+
result = chatbot(prompt, max_length=100, do_sample=True, temperature=0.7)
|
111 |
+
return result[0]["generated_text"]
|
112 |
+
|
113 |
+
iface = gr.Interface(fn=chatbot_response, inputs="text", outputs="text")
|
114 |
+
iface.launch()
|