Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,31 +3,33 @@ import torch
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
# Load the model and tokenizer
|
6 |
-
model_id = "google/gemma-7b"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
9 |
|
10 |
# Function to generate responses based on user messages
|
11 |
def generate_response(messages):
|
12 |
-
input_ids = tokenizer.
|
13 |
-
outputs = model.generate(input_ids,
|
14 |
generated_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
15 |
return generated_response
|
16 |
|
|
|
17 |
st.title("Gemma Chatbot")
|
18 |
messages = []
|
|
|
19 |
user_input = st.text_input("You:", "")
|
20 |
if st.button("Send"):
|
21 |
if user_input:
|
22 |
-
messages.append(
|
23 |
bot_response = generate_response(messages)
|
24 |
-
messages.append(
|
25 |
else:
|
26 |
-
st.warning("Please enter a message
|
27 |
|
28 |
# Display conversation
|
29 |
-
for message in messages:
|
30 |
-
if
|
31 |
-
st.text_input("You:", value=message
|
32 |
-
|
33 |
-
st.text_area("Gemma:", value=message
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
# Load the model and tokenizer
|
6 |
+
model_id = "google/gemma-7b"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
9 |
|
10 |
# Function to generate responses based on user messages
|
11 |
def generate_response(messages):
|
12 |
+
input_ids = tokenizer.encode(messages, return_tensors="pt").to(model.device)
|
13 |
+
outputs = model.generate(input_ids, max_length=100, pad_token_id=tokenizer.eos_token_id)
|
14 |
generated_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
15 |
return generated_response
|
16 |
|
17 |
+
# Streamlit app
|
18 |
st.title("Gemma Chatbot")
|
19 |
messages = []
|
20 |
+
|
21 |
user_input = st.text_input("You:", "")
|
22 |
if st.button("Send"):
|
23 |
if user_input:
|
24 |
+
messages.append(user_input)
|
25 |
bot_response = generate_response(messages)
|
26 |
+
messages.append(bot_response)
|
27 |
else:
|
28 |
+
st.warning("Please enter a message.")
|
29 |
|
30 |
# Display conversation
|
31 |
+
for i, message in enumerate(messages):
|
32 |
+
if i % 2 == 0:
|
33 |
+
st.text_input("You:", value=message, disabled=True)
|
34 |
+
else:
|
35 |
+
st.text_area("Gemma:", value=message, disabled=True)
|