|
import tempfile |
|
import time |
|
from collections.abc import Sequence |
|
from typing import Any, cast |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import pillow_heif |
|
import spaces |
|
import torch |
|
from gradio_image_annotation import image_annotator |
|
from gradio_imageslider import ImageSlider |
|
from PIL import Image |
|
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml |
|
from refiners.fluxion.utils import no_grad |
|
from refiners.solutions import BoxSegmenter |
|
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor |
|
|
|
BoundingBox = tuple[int, int, int, int] |
|
|
|
pillow_heif.register_heif_opener() |
|
pillow_heif.register_avif_opener() |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
segmenter = BoxSegmenter(device="cpu") |
|
segmenter.device = device |
|
segmenter.model = segmenter.model.to(device=segmenter.device) |
|
|
|
gd_model_path = "IDEA-Research/grounding-dino-base" |
|
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path) |
|
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32) |
|
gd_model = gd_model.to(device=device) |
|
assert isinstance(gd_model, GroundingDinoForObjectDetection) |
|
|
|
|
|
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None: |
|
if not bboxes: |
|
return None |
|
for bbox in bboxes: |
|
assert len(bbox) == 4 |
|
assert all(isinstance(x, int) for x in bbox) |
|
return ( |
|
min(bbox[0] for bbox in bboxes), |
|
min(bbox[1] for bbox in bboxes), |
|
max(bbox[2] for bbox in bboxes), |
|
max(bbox[3] for bbox in bboxes), |
|
) |
|
|
|
|
|
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor: |
|
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1) |
|
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1) |
|
|
|
|
|
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None: |
|
assert isinstance(gd_processor, GroundingDinoProcessor) |
|
|
|
|
|
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device) |
|
|
|
with no_grad(): |
|
outputs = gd_model(**inputs) |
|
width, height = img.size |
|
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection( |
|
outputs, |
|
inputs["input_ids"], |
|
target_sizes=[(height, width)], |
|
)[0] |
|
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor) |
|
|
|
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height) |
|
return bbox_union(bboxes.numpy().tolist()) |
|
|
|
|
|
def apply_mask( |
|
img: Image.Image, |
|
mask_img: Image.Image, |
|
defringe: bool = True, |
|
) -> Image.Image: |
|
assert img.size == mask_img.size |
|
img = img.convert("RGB") |
|
mask_img = mask_img.convert("L") |
|
|
|
if defringe: |
|
|
|
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0 |
|
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha)) |
|
img = Image.fromarray((foreground * 255).astype("uint8")) |
|
|
|
result = Image.new("RGBA", img.size) |
|
result.paste(img, (0, 0), mask_img) |
|
return result |
|
|
|
|
|
@spaces.GPU |
|
def _gpu_process( |
|
img: Image.Image, |
|
prompt: str | BoundingBox | None, |
|
) -> tuple[Image.Image, BoundingBox | None, list[str]]: |
|
|
|
|
|
|
|
time_log: list[str] = [] |
|
|
|
if isinstance(prompt, str): |
|
t0 = time.time() |
|
bbox = gd_detect(img, prompt) |
|
time_log.append(f"detect: {time.time() - t0}") |
|
if not bbox: |
|
print(time_log[0]) |
|
raise gr.Error("No object detected") |
|
else: |
|
bbox = prompt |
|
|
|
t0 = time.time() |
|
mask = segmenter(img, bbox) |
|
time_log.append(f"segment: {time.time() - t0}") |
|
|
|
return mask, bbox, time_log |
|
|
|
|
|
def _process( |
|
img: Image.Image, |
|
prompt: str | BoundingBox | None, |
|
) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: |
|
|
|
if img.width > 2048 or img.height > 2048: |
|
orig_res = max(img.width, img.height) |
|
img.thumbnail((2048, 2048)) |
|
if isinstance(prompt, tuple): |
|
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt) |
|
prompt = (x0, y0, x1, y1) |
|
|
|
mask, bbox, time_log = _gpu_process(img, prompt) |
|
|
|
t0 = time.time() |
|
masked_alpha = apply_mask(img, mask, defringe=True) |
|
time_log.append(f"crop: {time.time() - t0}") |
|
print(", ".join(time_log)) |
|
|
|
masked_rgb = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha) |
|
|
|
thresholded = mask.point(lambda p: 255 if p > 10 else 0) |
|
bbox = thresholded.getbbox() |
|
to_dl = masked_alpha.crop(bbox) |
|
|
|
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png") |
|
to_dl.save(temp, format="PNG") |
|
temp.close() |
|
|
|
return (img, masked_rgb), gr.DownloadButton(value=temp.name, interactive=True) |
|
|
|
|
|
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: |
|
assert isinstance(img := prompts["image"], Image.Image) |
|
assert isinstance(boxes := prompts["boxes"], list) |
|
if len(boxes) == 1: |
|
assert isinstance(box := boxes[0], dict) |
|
bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"]) |
|
else: |
|
assert len(boxes) == 0 |
|
bbox = None |
|
return _process(img, bbox) |
|
|
|
|
|
def on_change_bbox(prompts: dict[str, Any] | None): |
|
return gr.update(interactive=prompts is not None) |
|
|
|
|
|
def process_prompt(img: Image.Image, prompt: str) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: |
|
return _process(img, prompt) |
|
|
|
|
|
def on_change_prompt(img: Image.Image | None, prompt: str | None): |
|
return gr.update(interactive=bool(img and prompt)) |
|
|
|
|
|
TITLE = """ |
|
<center> |
|
|
|
<h1 style="font-size: 1.5rem; margin-bottom: 0.5rem;"> |
|
Object Cutter Powered By Refiners |
|
</h1> |
|
|
|
<div style=" |
|
display: flex; |
|
align-items: center; |
|
justify-content: center; |
|
gap: 0.5rem; |
|
margin-bottom: 0.5rem; |
|
font-size: 1.25rem; |
|
flex-wrap: wrap; |
|
"> |
|
<a href="https://github.com/finegrain-ai/refiners" target="_blank">[Refiners]</a> |
|
<a href="https://finegrain.ai/" target="_blank">[Finegrain]</a> |
|
<a |
|
href="https://huggingface.co/spaces/finegrain/finegrain-object-eraser" |
|
target="_blank" |
|
>[Finegrain Object Eraser]</a> |
|
<a |
|
href="https://huggingface.co/spaces/finegrain/finegrain-image-enhancer" |
|
target="_blank" |
|
>[Finegrain Image Enhancer]</a> |
|
</div> |
|
|
|
<p> |
|
Create high-quality HD cutouts for any object in your image with just a text prompt — no manual work required! |
|
<br> |
|
The object will be available on a transparent background, ready to paste elsewhere. |
|
</p> |
|
|
|
<p> |
|
This space uses the |
|
<a |
|
href="https://huggingface.co/finegrain/finegrain-box-segmenter" |
|
target="_blank" |
|
>Finegrain Box Segmenter model</a>, |
|
trained with a mix of natural data curated by Finegrain and |
|
<a |
|
href="https://huggingface.co/datasets/Nfiniteai/product-masks-sample" |
|
target="_blank" |
|
>synthetic data provided by Nfinite</a>. |
|
<br> |
|
It is powered by Refiners, our open source micro-framework for simple foundation model adaptation. |
|
If you enjoyed it, please consider starring Refiners on GitHub! |
|
</p> |
|
|
|
<a href="https://github.com/finegrain-ai/refiners" target="_blank"> |
|
<img src="https://img.shields.io/github/stars/finegrain-ai/refiners?style=social" /> |
|
</a> |
|
|
|
</center> |
|
""" |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML(TITLE) |
|
|
|
with gr.Tab("By prompt", id="tab_prompt"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
iimg = gr.Image(type="pil", label="Input") |
|
prompt = gr.Textbox(label="What should we cut?") |
|
btn = gr.ClearButton(value="Cut Out Object", interactive=False) |
|
with gr.Column(): |
|
oimg = ImageSlider(label="Before / After", show_download_button=False, interactive=False) |
|
dlbt = gr.DownloadButton("Download Cutout", interactive=False) |
|
|
|
btn.add(oimg) |
|
|
|
for inp in [iimg, prompt]: |
|
inp.change( |
|
fn=on_change_prompt, |
|
inputs=[iimg, prompt], |
|
outputs=[btn], |
|
) |
|
btn.click( |
|
fn=process_prompt, |
|
inputs=[iimg, prompt], |
|
outputs=[oimg, dlbt], |
|
api_name=False, |
|
) |
|
|
|
examples = [ |
|
[ |
|
"examples/potted-plant.jpg", |
|
"potted plant", |
|
], |
|
[ |
|
"examples/chair.jpg", |
|
"chair", |
|
], |
|
[ |
|
"examples/black-lamp.jpg", |
|
"black lamp", |
|
], |
|
] |
|
|
|
ex = gr.Examples( |
|
examples=examples, |
|
inputs=[iimg, prompt], |
|
outputs=[oimg, dlbt], |
|
fn=process_prompt, |
|
cache_examples=True, |
|
) |
|
|
|
with gr.Tab("By bounding box", id="tab_bb"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
annotator = image_annotator( |
|
image_type="pil", |
|
disable_edit_boxes=True, |
|
show_download_button=False, |
|
show_share_button=False, |
|
single_box=True, |
|
label="Input", |
|
) |
|
btn = gr.ClearButton(value="Cut Out Object", interactive=False) |
|
with gr.Column(): |
|
oimg = ImageSlider(label="Before / After", show_download_button=False) |
|
dlbt = gr.DownloadButton("Download Cutout", interactive=False) |
|
|
|
btn.add(oimg) |
|
|
|
annotator.change( |
|
fn=on_change_bbox, |
|
inputs=[annotator], |
|
outputs=[btn], |
|
) |
|
btn.click( |
|
fn=process_bbox, |
|
inputs=[annotator], |
|
outputs=[oimg, dlbt], |
|
api_name=False, |
|
) |
|
|
|
examples = [ |
|
{ |
|
"image": "examples/potted-plant.jpg", |
|
"boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}], |
|
}, |
|
{ |
|
"image": "examples/chair.jpg", |
|
"boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}], |
|
}, |
|
{ |
|
"image": "examples/black-lamp.jpg", |
|
"boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}], |
|
}, |
|
] |
|
|
|
ex = gr.Examples( |
|
examples=examples, |
|
inputs=[annotator], |
|
outputs=[oimg, dlbt], |
|
fn=process_bbox, |
|
cache_examples=True, |
|
) |
|
|
|
|
|
demo.queue(max_size=30, api_open=False) |
|
demo.launch(show_api=False) |
|
|