import os import torch import argparse import numpy as np from PIL import Image from skimage import io from models.ormbg import ORMBG import torch.nn.functional as F def parse_args(): parser = argparse.ArgumentParser( description="Remove background from images using ORMBG model." ) parser.add_argument( "--image", type=str, default=os.path.join("examples", "image", "example01.jpeg"), help="Path to the input image file.", ) parser.add_argument( "--output", type=str, default=os.path.join("example01_no_background.png"), help="Path to the output image file.", ) parser.add_argument( "--model-path", type=str, default=os.path.join("models", "ormbg.pth"), help="Path to the model file.", ) parser.add_argument( "--compare", action="store_false", help="Flag to save the original and processed images side by side.", ) return parser.parse_args() def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor: if len(im.shape) < 3: im = im[:, :, np.newaxis] im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1) im_tensor = F.interpolate( torch.unsqueeze(im_tensor, 0), size=model_input_size, mode="bilinear" ).type(torch.uint8) image = torch.divide(im_tensor, 255.0) return image def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray: result = torch.squeeze(F.interpolate(result, size=im_size, mode="bilinear"), 0) ma = torch.max(result) mi = torch.min(result) result = (result - mi) / (ma - mi) im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8) im_array = np.squeeze(im_array) return im_array def inference(args): image_path = args.image result_name = args.output model_path = args.model_path compare = args.compare net = ORMBG() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): net.load_state_dict(torch.load(model_path)) net = net.cuda() else: net.load_state_dict(torch.load(model_path, map_location="cpu")) net.eval() model_input_size = [1024, 1024] orig_im = io.imread(image_path) orig_im_size = orig_im.shape[0:2] image = preprocess_image(orig_im, model_input_size).to(device) result = net(image) # post process result_image = postprocess_image(result[0][0], orig_im_size) # save result pil_im = Image.fromarray(result_image) if pil_im.mode == "RGBA": pil_im = pil_im.convert("RGB") no_bg_image = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) orig_image = Image.open(image_path) no_bg_image.paste(orig_image, mask=pil_im) if compare: combined_width = orig_image.width + no_bg_image.width combined_image = Image.new("RGBA", (combined_width, orig_image.height)) combined_image.paste(orig_image, (0, 0)) combined_image.paste(no_bg_image, (orig_image.width, 0)) stacked_output_path = os.path.splitext(result_name)[0] + ".png" combined_image.save(stacked_output_path) else: no_bg_image.save(result_name) if __name__ == "__main__": inference(parse_args())