Upload folder using huggingface_hub
Browse files- .gitignore +0 -157
- IMG_1051.png +0 -3
- dataset/training/gt/p_00a4eda7.png +0 -0
- dataset/training/gt/p_00a5b702.png +0 -0
- dataset/training/im/p_00a4eda7.png +0 -3
- dataset/training/im/p_00a5b702.png +0 -3
- dataset/validation/gt/p_00a7a27c.png +0 -0
- dataset/validation/im/p_00a7a27c.png +0 -3
- environment.yaml +0 -199
- example 2.png +0 -3
- example1.jpeg +0 -3
- example1.png +0 -3
- example2.jpeg +0 -3
- example2.png +0 -3
- example3.jpeg +0 -3
- example3.png +0 -3
- examples.jpg +0 -3
- examples/.DS_Store +0 -0
- examples/image/example01.jpeg +0 -3
- examples/image/example02.jpeg +0 -3
- examples/image/example03.jpeg +0 -3
- examples/image/image01.png +0 -3
- examples/image/image01_no_background.png +0 -3
- examples/loss/gt.png +0 -0
- examples/loss/loss01.png +0 -0
- examples/loss/loss02.png +0 -0
- examples/loss/loss03.png +0 -0
- examples/loss/loss04.png +0 -0
- examples/loss/loss05.png +0 -0
- examples/loss/orginal.jpg +0 -0
- explanation.jpg +0 -0
- hf_space.py +0 -88
- hf_space/app.py +0 -90
- hf_space/example01.jpeg +0 -3
- hf_space/example02.jpeg +0 -3
- hf_space/example03.jpeg +0 -3
- hf_space/ormbg.py +0 -484
- input.png +0 -3
- ormbg/.DS_Store +0 -0
- ormbg/basics.py +0 -79
- ormbg/data_loader_cache.py +0 -489
- ormbg/inference.py +0 -110
- ormbg/models/ormbg.py +0 -484
- ormbg/train_model.py +0 -474
- stack.py +0 -37
- utils/.DS_Store +0 -0
- utils/architecture.py +0 -4
- utils/loss_example.py +0 -69
- utils/pth_to_onnx.py +0 -59
.gitignore
DELETED
@@ -1,157 +0,0 @@
|
|
1 |
-
# Byte-compiled / optimized / DLL files
|
2 |
-
__pycache__/
|
3 |
-
*.py[cod]
|
4 |
-
*$py.class
|
5 |
-
|
6 |
-
# C extensions
|
7 |
-
*.so
|
8 |
-
|
9 |
-
# Distribution / packaging
|
10 |
-
.Python
|
11 |
-
build/
|
12 |
-
develop-eggs/
|
13 |
-
dist/
|
14 |
-
downloads/
|
15 |
-
eggs/
|
16 |
-
.eggs/
|
17 |
-
lib/
|
18 |
-
lib64/
|
19 |
-
parts/
|
20 |
-
sdist/
|
21 |
-
var/
|
22 |
-
wheels/
|
23 |
-
share/python-wheels/
|
24 |
-
*.egg-info/
|
25 |
-
.installed.cfg
|
26 |
-
*.egg
|
27 |
-
MANIFEST
|
28 |
-
|
29 |
-
# PyInstaller
|
30 |
-
# Usually these files are written by a python script from a template
|
31 |
-
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
-
*.manifest
|
33 |
-
*.spec
|
34 |
-
|
35 |
-
# Installer logs
|
36 |
-
pip-log.txt
|
37 |
-
pip-delete-this-directory.txt
|
38 |
-
|
39 |
-
# Unit test / coverage reports
|
40 |
-
htmlcov/
|
41 |
-
.tox/
|
42 |
-
.nox/
|
43 |
-
.coverage
|
44 |
-
.coverage.*
|
45 |
-
.cache
|
46 |
-
nosetests.xml
|
47 |
-
coverage.xml
|
48 |
-
*.cover
|
49 |
-
*.py,cover
|
50 |
-
.hypothesis/
|
51 |
-
.pytest_cache/
|
52 |
-
cover/
|
53 |
-
|
54 |
-
# Translations
|
55 |
-
*.mo
|
56 |
-
*.pot
|
57 |
-
|
58 |
-
# Django stuff:
|
59 |
-
*.log
|
60 |
-
local_settings.py
|
61 |
-
db.sqlite3
|
62 |
-
db.sqlite3-journal
|
63 |
-
|
64 |
-
# Flask stuff:
|
65 |
-
instance/
|
66 |
-
.webassets-cache
|
67 |
-
|
68 |
-
# Scrapy stuff:
|
69 |
-
.scrapy
|
70 |
-
|
71 |
-
# Sphinx documentation
|
72 |
-
docs/_build/
|
73 |
-
|
74 |
-
# PyBuilder
|
75 |
-
.pybuilder/
|
76 |
-
target/
|
77 |
-
|
78 |
-
# Jupyter Notebook
|
79 |
-
.ipynb_checkpoints
|
80 |
-
|
81 |
-
# IPython
|
82 |
-
profile_default/
|
83 |
-
ipython_config.py
|
84 |
-
|
85 |
-
# pyenv
|
86 |
-
# For a library or package, you might want to ignore these files since the code is
|
87 |
-
# intended to run in multiple environments; otherwise, check them in:
|
88 |
-
# .python-version
|
89 |
-
|
90 |
-
# pipenv
|
91 |
-
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
-
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
-
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
-
# install all needed dependencies.
|
95 |
-
#Pipfile.lock
|
96 |
-
|
97 |
-
# poetry
|
98 |
-
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
-
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
-
# commonly ignored for libraries.
|
101 |
-
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
-
#poetry.lock
|
103 |
-
|
104 |
-
# pdm
|
105 |
-
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
-
#pdm.lock
|
107 |
-
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
-
# in version control.
|
109 |
-
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
110 |
-
.pdm.toml
|
111 |
-
.pdm-python
|
112 |
-
.pdm-build/
|
113 |
-
|
114 |
-
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
115 |
-
__pypackages__/
|
116 |
-
|
117 |
-
# Celery stuff
|
118 |
-
celerybeat-schedule
|
119 |
-
celerybeat.pid
|
120 |
-
|
121 |
-
# SageMath parsed files
|
122 |
-
*.sage.py
|
123 |
-
|
124 |
-
# Environments
|
125 |
-
.env
|
126 |
-
.venv
|
127 |
-
env/
|
128 |
-
venv/
|
129 |
-
ENV/
|
130 |
-
env.bak/
|
131 |
-
venv.bak/
|
132 |
-
|
133 |
-
# Spyder project settings
|
134 |
-
.spyderproject
|
135 |
-
.spyproject
|
136 |
-
|
137 |
-
# Rope project settings
|
138 |
-
.ropeproject
|
139 |
-
|
140 |
-
# mkdocs documentation
|
141 |
-
/site
|
142 |
-
|
143 |
-
# mypy
|
144 |
-
.mypy_cache/
|
145 |
-
.dmypy.json
|
146 |
-
dmypy.json
|
147 |
-
|
148 |
-
# Pyre type checker
|
149 |
-
.pyre/
|
150 |
-
|
151 |
-
# pytype static type analyzer
|
152 |
-
.pytype/
|
153 |
-
|
154 |
-
# Cython debug symbols
|
155 |
-
cython_debug/
|
156 |
-
|
157 |
-
models/*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IMG_1051.png
DELETED
Git LFS Details
|
dataset/training/gt/p_00a4eda7.png
DELETED
Binary file (38.7 kB)
|
|
dataset/training/gt/p_00a5b702.png
DELETED
Binary file (96.9 kB)
|
|
dataset/training/im/p_00a4eda7.png
DELETED
Git LFS Details
|
dataset/training/im/p_00a5b702.png
DELETED
Git LFS Details
|
dataset/validation/gt/p_00a7a27c.png
DELETED
Binary file (81.8 kB)
|
|
dataset/validation/im/p_00a7a27c.png
DELETED
Git LFS Details
|
environment.yaml
DELETED
@@ -1,199 +0,0 @@
|
|
1 |
-
name: ormbg
|
2 |
-
channels:
|
3 |
-
- pytorch
|
4 |
-
- nvidia
|
5 |
-
- anaconda
|
6 |
-
- defaults
|
7 |
-
dependencies:
|
8 |
-
- _libgcc_mutex=0.1=main
|
9 |
-
- _openmp_mutex=5.1=1_gnu
|
10 |
-
- aom=3.6.0=h6a678d5_0
|
11 |
-
- blas=1.0=mkl
|
12 |
-
- blosc=1.21.3=h6a678d5_0
|
13 |
-
- brotli=1.0.9=h5eee18b_7
|
14 |
-
- brotli-bin=1.0.9=h5eee18b_7
|
15 |
-
- brotli-python=1.0.9=py38h6a678d5_7
|
16 |
-
- brunsli=0.1=h2531618_0
|
17 |
-
- bzip2=1.0.8=h7b6447c_0
|
18 |
-
- c-ares=1.19.1=h5eee18b_0
|
19 |
-
- ca-certificates=2023.08.22=h06a4308_0
|
20 |
-
- certifi=2023.7.22=py38h06a4308_0
|
21 |
-
- cffi=1.15.0=py38h7f8727e_0
|
22 |
-
- cfitsio=3.470=h5893167_7
|
23 |
-
- charls=2.2.0=h2531618_0
|
24 |
-
- charset-normalizer=2.0.4=pyhd3eb1b0_0
|
25 |
-
- click=8.1.7=py38h06a4308_0
|
26 |
-
- cloudpickle=2.2.1=py38h06a4308_0
|
27 |
-
- contourpy=1.0.5=py38hdb19cb5_0
|
28 |
-
- cryptography=41.0.3=py38h130f0dd_0
|
29 |
-
- cuda-cudart=11.8.89=0
|
30 |
-
- cuda-cupti=11.8.87=0
|
31 |
-
- cuda-libraries=11.8.0=0
|
32 |
-
- cuda-nvrtc=11.8.89=0
|
33 |
-
- cuda-nvtx=11.8.86=0
|
34 |
-
- cuda-runtime=11.8.0=0
|
35 |
-
- cudatoolkit=11.8.0=h6a678d5_0
|
36 |
-
- cycler=0.11.0=pyhd3eb1b0_0
|
37 |
-
- cytoolz=0.12.0=py38h5eee18b_0
|
38 |
-
- dask-core=2023.4.1=py38h06a4308_0
|
39 |
-
- dav1d=1.2.1=h5eee18b_0
|
40 |
-
- dbus=1.13.18=hb2f20db_0
|
41 |
-
- expat=2.5.0=h6a678d5_0
|
42 |
-
- ffmpeg=4.3=hf484d3e_0
|
43 |
-
- fftw=3.3.9=h27cfd23_1
|
44 |
-
- filelock=3.9.0=py38h06a4308_0
|
45 |
-
- fontconfig=2.14.1=h52c9d5c_1
|
46 |
-
- fonttools=4.25.0=pyhd3eb1b0_0
|
47 |
-
- freetype=2.12.1=h4a9f257_0
|
48 |
-
- fsspec=2023.9.2=py38h06a4308_0
|
49 |
-
- giflib=5.2.1=h5eee18b_3
|
50 |
-
- glib=2.63.1=h5a9c865_0
|
51 |
-
- gmp=6.2.1=h295c915_3
|
52 |
-
- gmpy2=2.1.2=py38heeb90bb_0
|
53 |
-
- gnutls=3.6.15=he1e5248_0
|
54 |
-
- gst-plugins-base=1.14.0=hbbd80ab_1
|
55 |
-
- gstreamer=1.14.0=hb453b48_1
|
56 |
-
- icu=58.2=he6710b0_3
|
57 |
-
- idna=3.4=py38h06a4308_0
|
58 |
-
- imagecodecs=2023.1.23=py38hc4b7b5f_0
|
59 |
-
- imageio=2.31.4=py38h06a4308_0
|
60 |
-
- importlib-metadata=6.0.0=py38h06a4308_0
|
61 |
-
- importlib_resources=6.1.0=py38h06a4308_0
|
62 |
-
- intel-openmp=2021.4.0=h06a4308_3561
|
63 |
-
- jinja2=3.1.2=py38h06a4308_0
|
64 |
-
- jpeg=9e=h5eee18b_1
|
65 |
-
- jxrlib=1.1=h7b6447c_2
|
66 |
-
- kiwisolver=1.4.4=py38h6a678d5_0
|
67 |
-
- krb5=1.20.1=h568e23c_1
|
68 |
-
- lame=3.100=h7b6447c_0
|
69 |
-
- lazy_loader=0.3=py38h06a4308_0
|
70 |
-
- lcms2=2.12=h3be6417_0
|
71 |
-
- lerc=3.0=h295c915_0
|
72 |
-
- libaec=1.0.4=he6710b0_1
|
73 |
-
- libavif=0.11.1=h5eee18b_0
|
74 |
-
- libbrotlicommon=1.0.9=h5eee18b_7
|
75 |
-
- libbrotlidec=1.0.9=h5eee18b_7
|
76 |
-
- libbrotlienc=1.0.9=h5eee18b_7
|
77 |
-
- libcublas=11.11.3.6=0
|
78 |
-
- libcufft=10.9.0.58=0
|
79 |
-
- libcufile=1.8.1.2=0
|
80 |
-
- libcurand=10.3.4.101=0
|
81 |
-
- libcurl=7.88.1=h91b91d3_2
|
82 |
-
- libcusolver=11.4.1.48=0
|
83 |
-
- libcusparse=11.7.5.86=0
|
84 |
-
- libdeflate=1.17=h5eee18b_1
|
85 |
-
- libedit=3.1.20221030=h5eee18b_0
|
86 |
-
- libev=4.33=h7f8727e_1
|
87 |
-
- libffi=3.2.1=hf484d3e_1007
|
88 |
-
- libgcc-ng=11.2.0=h1234567_1
|
89 |
-
- libgfortran-ng=11.2.0=h00389a5_1
|
90 |
-
- libgfortran5=11.2.0=h1234567_1
|
91 |
-
- libgomp=11.2.0=h1234567_1
|
92 |
-
- libiconv=1.16=h7f8727e_2
|
93 |
-
- libidn2=2.3.4=h5eee18b_0
|
94 |
-
- libjpeg-turbo=2.0.0=h9bf148f_0
|
95 |
-
- libnghttp2=1.52.0=ha637b67_1
|
96 |
-
- libnpp=11.8.0.86=0
|
97 |
-
- libnvjpeg=11.9.0.86=0
|
98 |
-
- libpng=1.6.39=h5eee18b_0
|
99 |
-
- libssh2=1.10.0=h37d81fd_2
|
100 |
-
- libstdcxx-ng=11.2.0=h1234567_1
|
101 |
-
- libtasn1=4.19.0=h5eee18b_0
|
102 |
-
- libtiff=4.5.1=h6a678d5_0
|
103 |
-
- libunistring=0.9.10=h27cfd23_0
|
104 |
-
- libuuid=1.41.5=h5eee18b_0
|
105 |
-
- libwebp=1.3.2=h11a3e52_0
|
106 |
-
- libwebp-base=1.3.2=h5eee18b_0
|
107 |
-
- libxcb=1.15=h7f8727e_0
|
108 |
-
- libxml2=2.9.14=h74e7548_0
|
109 |
-
- libzopfli=1.0.3=he6710b0_0
|
110 |
-
- llvm-openmp=14.0.6=h9e868ea_0
|
111 |
-
- locket=1.0.0=py38h06a4308_0
|
112 |
-
- lz4-c=1.9.4=h6a678d5_0
|
113 |
-
- markupsafe=2.1.1=py38h7f8727e_0
|
114 |
-
- matplotlib=3.7.2=py38h06a4308_0
|
115 |
-
- matplotlib-base=3.7.2=py38h1128e8f_0
|
116 |
-
- mkl=2021.4.0=h06a4308_640
|
117 |
-
- mkl-service=2.4.0=py38h7f8727e_0
|
118 |
-
- mkl_fft=1.3.1=py38hd3c417c_0
|
119 |
-
- mkl_random=1.2.2=py38h51133e4_0
|
120 |
-
- mpc=1.1.0=h10f8cd9_1
|
121 |
-
- mpfr=4.0.2=hb69a4c5_1
|
122 |
-
- mpmath=1.3.0=py38h06a4308_0
|
123 |
-
- munkres=1.1.4=py_0
|
124 |
-
- ncurses=6.4=h6a678d5_0
|
125 |
-
- nettle=3.7.3=hbbd107a_1
|
126 |
-
- networkx=3.1=py38h06a4308_0
|
127 |
-
- openh264=2.1.1=h4ff587b_0
|
128 |
-
- openjpeg=2.4.0=h3ad879b_0
|
129 |
-
- openssl=1.1.1w=h7f8727e_0
|
130 |
-
- packaging=23.1=py38h06a4308_0
|
131 |
-
- partd=1.4.1=py38h06a4308_0
|
132 |
-
- pcre=8.45=h295c915_0
|
133 |
-
- pillow=10.0.1=py38ha6cbd5a_0
|
134 |
-
- pip=23.3=py38h06a4308_0
|
135 |
-
- pycparser=2.21=pyhd3eb1b0_0
|
136 |
-
- pyopenssl=23.2.0=py38h06a4308_0
|
137 |
-
- pyparsing=3.0.9=py38h06a4308_0
|
138 |
-
- pyqt=5.9.2=py38h05f1152_4
|
139 |
-
- pysocks=1.7.1=py38h06a4308_0
|
140 |
-
- python=3.8.0=h0371630_2
|
141 |
-
- python-dateutil=2.8.2=pyhd3eb1b0_0
|
142 |
-
- pytorch=2.1.1=py3.8_cuda11.8_cudnn8.7.0_0
|
143 |
-
- pytorch-cuda=11.8=h7e8668a_5
|
144 |
-
- pytorch-mutex=1.0=cuda
|
145 |
-
- pywavelets=1.4.1=py38h5eee18b_0
|
146 |
-
- pyyaml=6.0.1=py38h5eee18b_0
|
147 |
-
- qt=5.9.7=h5867ecd_1
|
148 |
-
- readline=7.0=h7b6447c_5
|
149 |
-
- requests=2.31.0=py38h06a4308_0
|
150 |
-
- setuptools=68.0.0=py38h06a4308_0
|
151 |
-
- sip=4.19.13=py38h295c915_0
|
152 |
-
- six=1.16.0=pyhd3eb1b0_1
|
153 |
-
- snappy=1.1.9=h295c915_0
|
154 |
-
- sqlite=3.33.0=h62c20be_0
|
155 |
-
- sympy=1.11.1=py38h06a4308_0
|
156 |
-
- tifffile=2023.4.12=py38h06a4308_0
|
157 |
-
- tk=8.6.12=h1ccaba5_0
|
158 |
-
- toolz=0.12.0=py38h06a4308_0
|
159 |
-
- torchaudio=2.1.1=py38_cu118
|
160 |
-
- torchtriton=2.1.0=py38
|
161 |
-
- torchvision=0.16.1=py38_cu118
|
162 |
-
- tornado=6.3.3=py38h5eee18b_0
|
163 |
-
- tqdm=4.65.0=py38hb070fc8_0
|
164 |
-
- urllib3=1.26.18=py38h06a4308_0
|
165 |
-
- wheel=0.41.2=py38h06a4308_0
|
166 |
-
- xz=5.4.2=h5eee18b_0
|
167 |
-
- yaml=0.2.5=h7b6447c_0
|
168 |
-
- zfp=1.0.0=h6a678d5_0
|
169 |
-
- zipp=3.11.0=py38h06a4308_0
|
170 |
-
- zlib=1.2.13=h5eee18b_0
|
171 |
-
- zstd=1.5.5=hc292b87_0
|
172 |
-
- pip:
|
173 |
-
- albucore==0.0.12
|
174 |
-
- albumentations==1.4.11
|
175 |
-
- annotated-types==0.7.0
|
176 |
-
- appdirs==1.4.4
|
177 |
-
- conda-pack==0.7.1
|
178 |
-
- docker-pycreds==0.4.0
|
179 |
-
- eval-type-backport==0.2.0
|
180 |
-
- gitdb==4.0.11
|
181 |
-
- gitpython==3.1.40
|
182 |
-
- joblib==1.4.2
|
183 |
-
- numpy==1.24.4
|
184 |
-
- opencv-python-headless==4.10.0.84
|
185 |
-
- protobuf==4.25.1
|
186 |
-
- psutil==5.9.6
|
187 |
-
- pydantic==2.8.2
|
188 |
-
- pydantic-core==2.20.1
|
189 |
-
- scikit-image==0.21.0
|
190 |
-
- scikit-learn==1.3.2
|
191 |
-
- scipy==1.10.1
|
192 |
-
- sentry-sdk==1.35.0
|
193 |
-
- setproctitle==1.3.3
|
194 |
-
- smmap==5.0.1
|
195 |
-
- threadpoolctl==3.5.0
|
196 |
-
- tomli==2.0.1
|
197 |
-
- typing-extensions==4.12.2
|
198 |
-
- wandb==0.16.0
|
199 |
-
prefix: /home/macher/miniconda3/envs/ormbg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
example 2.png
DELETED
Git LFS Details
|
example1.jpeg
DELETED
Git LFS Details
|
example1.png
DELETED
Git LFS Details
|
example2.jpeg
DELETED
Git LFS Details
|
example2.png
DELETED
Git LFS Details
|
example3.jpeg
DELETED
Git LFS Details
|
example3.png
DELETED
Git LFS Details
|
examples.jpg
DELETED
Git LFS Details
|
examples/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
examples/image/example01.jpeg
DELETED
Git LFS Details
|
examples/image/example02.jpeg
DELETED
Git LFS Details
|
examples/image/example03.jpeg
DELETED
Git LFS Details
|
examples/image/image01.png
DELETED
Git LFS Details
|
examples/image/image01_no_background.png
DELETED
Git LFS Details
|
examples/loss/gt.png
DELETED
Binary file (258 kB)
|
|
examples/loss/loss01.png
DELETED
Binary file (291 kB)
|
|
examples/loss/loss02.png
DELETED
Binary file (417 kB)
|
|
examples/loss/loss03.png
DELETED
Binary file (645 kB)
|
|
examples/loss/loss04.png
DELETED
Binary file (794 kB)
|
|
examples/loss/loss05.png
DELETED
Binary file (983 kB)
|
|
examples/loss/orginal.jpg
DELETED
Binary file (366 kB)
|
|
explanation.jpg
DELETED
Binary file (713 kB)
|
|
hf_space.py
DELETED
@@ -1,88 +0,0 @@
|
|
1 |
-
import spaces
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
import torch.nn.functional as F
|
5 |
-
import gradio as gr
|
6 |
-
from ormbg.models.ormbg import ORMBG
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
model_path = "models/ormbg.pth"
|
10 |
-
|
11 |
-
# Load the model globally but don't send to device yet
|
12 |
-
net = ORMBG()
|
13 |
-
net.load_state_dict(torch.load(model_path, map_location="cpu"))
|
14 |
-
net.eval()
|
15 |
-
|
16 |
-
|
17 |
-
def resize_image(image):
|
18 |
-
image = image.convert("RGB")
|
19 |
-
model_input_size = (1024, 1024)
|
20 |
-
image = image.resize(model_input_size, Image.BILINEAR)
|
21 |
-
return image
|
22 |
-
|
23 |
-
|
24 |
-
@spaces.GPU
|
25 |
-
@torch.inference_mode()
|
26 |
-
def inference(image):
|
27 |
-
# Check for CUDA and set the device inside inference
|
28 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
-
net.to(device)
|
30 |
-
|
31 |
-
# Prepare input
|
32 |
-
orig_image = Image.fromarray(image)
|
33 |
-
w, h = orig_image.size
|
34 |
-
image = resize_image(orig_image)
|
35 |
-
im_np = np.array(image)
|
36 |
-
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
|
37 |
-
im_tensor = torch.unsqueeze(im_tensor, 0)
|
38 |
-
im_tensor = torch.divide(im_tensor, 255.0)
|
39 |
-
|
40 |
-
if torch.cuda.is_available():
|
41 |
-
im_tensor = im_tensor.to(device)
|
42 |
-
|
43 |
-
# Inference
|
44 |
-
result = net(im_tensor)
|
45 |
-
# Post process
|
46 |
-
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0)
|
47 |
-
ma = torch.max(result)
|
48 |
-
mi = torch.min(result)
|
49 |
-
result = (result - mi) / (ma - mi)
|
50 |
-
# Image to PIL
|
51 |
-
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
|
52 |
-
pil_im = Image.fromarray(np.squeeze(im_array))
|
53 |
-
# Paste the mask on the original image
|
54 |
-
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
|
55 |
-
new_im.paste(orig_image, mask=pil_im)
|
56 |
-
|
57 |
-
return new_im
|
58 |
-
|
59 |
-
|
60 |
-
# Gradio interface setup
|
61 |
-
title = "Open Remove Background Model (ormbg)"
|
62 |
-
description = r"""
|
63 |
-
This model is a <strong>fully open-source background remover</strong> optimized for images with humans. It is based on [Highly Accurate Dichotomous Image Segmentation research](https://github.com/xuebinqin/DIS). The model was trained with the synthetic <a href="https://huggingface.co/datasets/schirrmacher/humans">Human Segmentation Dataset</a>, <a href="https://paperswithcode.com/dataset/p3m-10k">P3M-10k</a> and <a href="https://paperswithcode.com/dataset/aim-500">AIM-500</a>.
|
64 |
-
|
65 |
-
If you identify cases where the model fails, <a href='https://huggingface.co/schirrmacher/ormbg/discussions' target='_blank'>upload your examples</a>!
|
66 |
-
|
67 |
-
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Model card</a>: find inference code, training information, tutorials
|
68 |
-
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Dataset</a>: see training images, segmentation data, backgrounds
|
69 |
-
- <a href='https://huggingface.co/schirrmacher/ormbg\#research' target='_blank'>Research</a>: see current approach for improvements
|
70 |
-
"""
|
71 |
-
|
72 |
-
examples = [
|
73 |
-
"./examples/image/example1.jpeg",
|
74 |
-
"./examples/image/example2.jpeg",
|
75 |
-
"./examples/image/example3.jpeg",
|
76 |
-
]
|
77 |
-
|
78 |
-
demo = gr.Interface(
|
79 |
-
fn=inference,
|
80 |
-
inputs="image",
|
81 |
-
outputs="image",
|
82 |
-
examples=examples,
|
83 |
-
title=title,
|
84 |
-
description=description,
|
85 |
-
)
|
86 |
-
|
87 |
-
if __name__ == "__main__":
|
88 |
-
demo.launch(share=False, allowed_paths=["ormbg", "models", "examples"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hf_space/app.py
DELETED
@@ -1,90 +0,0 @@
|
|
1 |
-
import spaces
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
import torch.nn.functional as F
|
5 |
-
import gradio as gr
|
6 |
-
from ormbg import ORMBG
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
model_path = "../models/ormbg.pth"
|
10 |
-
|
11 |
-
# Load the model globally but don't send to device yet
|
12 |
-
net = ORMBG()
|
13 |
-
net.load_state_dict(torch.load(model_path, map_location="cpu"))
|
14 |
-
net.eval()
|
15 |
-
|
16 |
-
|
17 |
-
def resize_image(image):
|
18 |
-
image = image.convert("RGB")
|
19 |
-
model_input_size = (1024, 1024)
|
20 |
-
image = image.resize(model_input_size, Image.BILINEAR)
|
21 |
-
return image
|
22 |
-
|
23 |
-
|
24 |
-
@spaces.GPU
|
25 |
-
@torch.inference_mode()
|
26 |
-
def inference(image):
|
27 |
-
# Check for CUDA and set the device inside inference
|
28 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
-
net.to(device)
|
30 |
-
|
31 |
-
# Prepare input
|
32 |
-
orig_image = Image.fromarray(image)
|
33 |
-
w, h = orig_image.size
|
34 |
-
image = resize_image(orig_image)
|
35 |
-
im_np = np.array(image)
|
36 |
-
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
|
37 |
-
im_tensor = torch.unsqueeze(im_tensor, 0)
|
38 |
-
im_tensor = torch.divide(im_tensor, 255.0)
|
39 |
-
|
40 |
-
if torch.cuda.is_available():
|
41 |
-
im_tensor = im_tensor.to(device)
|
42 |
-
|
43 |
-
# Inference
|
44 |
-
result = net(im_tensor)
|
45 |
-
# Post process
|
46 |
-
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0)
|
47 |
-
ma = torch.max(result)
|
48 |
-
mi = torch.min(result)
|
49 |
-
result = (result - mi) / (ma - mi)
|
50 |
-
# Image to PIL
|
51 |
-
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
|
52 |
-
pil_im = Image.fromarray(np.squeeze(im_array))
|
53 |
-
# Paste the mask on the original image
|
54 |
-
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
|
55 |
-
new_im.paste(orig_image, mask=pil_im)
|
56 |
-
|
57 |
-
return new_im
|
58 |
-
|
59 |
-
|
60 |
-
# Gradio interface setup
|
61 |
-
title = "Open Remove Background Model (ormbg)"
|
62 |
-
description = r"""
|
63 |
-
This model is a <strong>fully open-source background remover</strong> optimized for images with humans. It is based on [Highly Accurate Dichotomous Image Segmentation research](https://github.com/xuebinqin/DIS). The model was trained with the synthetic <a href="https://huggingface.co/datasets/schirrmacher/humans">Human Segmentation Dataset</a>, <a href="https://paperswithcode.com/dataset/p3m-10k">P3M-10k</a> and <a href="https://paperswithcode.com/dataset/aim-500">AIM-500</a>.
|
64 |
-
|
65 |
-
If you identify cases where the model fails, <a href='https://huggingface.co/schirrmacher/ormbg/discussions' target='_blank'>upload your examples</a>!
|
66 |
-
|
67 |
-
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Model card</a>: find inference code, training information, tutorials
|
68 |
-
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Dataset</a>: see training images, segmentation data, backgrounds
|
69 |
-
- <a href='https://huggingface.co/schirrmacher/ormbg\#research' target='_blank'>Research</a>: see current approach for improvements
|
70 |
-
"""
|
71 |
-
|
72 |
-
examples = [
|
73 |
-
"example1.jpeg",
|
74 |
-
"example2.jpeg",
|
75 |
-
"example3.jpeg",
|
76 |
-
]
|
77 |
-
|
78 |
-
demo = gr.Interface(
|
79 |
-
fn=inference,
|
80 |
-
inputs="image",
|
81 |
-
outputs="image",
|
82 |
-
examples=examples,
|
83 |
-
title=title,
|
84 |
-
description=description,
|
85 |
-
)
|
86 |
-
|
87 |
-
if __name__ == "__main__":
|
88 |
-
demo.launch(
|
89 |
-
share=False, root_path="../", allowed_paths=["../hf_space", "../models"]
|
90 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hf_space/example01.jpeg
DELETED
Git LFS Details
|
hf_space/example02.jpeg
DELETED
Git LFS Details
|
hf_space/example03.jpeg
DELETED
Git LFS Details
|
hf_space/ormbg.py
DELETED
@@ -1,484 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
# https://github.com/xuebinqin/DIS/blob/main/IS-Net/models/isnet.py
|
6 |
-
|
7 |
-
|
8 |
-
class REBNCONV(nn.Module):
|
9 |
-
def __init__(self, in_ch=3, out_ch=3, dirate=1, stride=1):
|
10 |
-
super(REBNCONV, self).__init__()
|
11 |
-
|
12 |
-
self.conv_s1 = nn.Conv2d(
|
13 |
-
in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate, stride=stride
|
14 |
-
)
|
15 |
-
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
16 |
-
self.relu_s1 = nn.ReLU(inplace=True)
|
17 |
-
|
18 |
-
def forward(self, x):
|
19 |
-
|
20 |
-
hx = x
|
21 |
-
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
22 |
-
|
23 |
-
return xout
|
24 |
-
|
25 |
-
|
26 |
-
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
27 |
-
def _upsample_like(src, tar):
|
28 |
-
|
29 |
-
src = F.interpolate(src, size=tar.shape[2:], mode="bilinear")
|
30 |
-
|
31 |
-
return src
|
32 |
-
|
33 |
-
|
34 |
-
### RSU-7 ###
|
35 |
-
class RSU7(nn.Module):
|
36 |
-
|
37 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
38 |
-
super(RSU7, self).__init__()
|
39 |
-
|
40 |
-
self.in_ch = in_ch
|
41 |
-
self.mid_ch = mid_ch
|
42 |
-
self.out_ch = out_ch
|
43 |
-
|
44 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) ## 1 -> 1/2
|
45 |
-
|
46 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
47 |
-
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
48 |
-
|
49 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
50 |
-
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
51 |
-
|
52 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
53 |
-
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
54 |
-
|
55 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
56 |
-
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
57 |
-
|
58 |
-
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
59 |
-
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
60 |
-
|
61 |
-
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
62 |
-
|
63 |
-
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
64 |
-
|
65 |
-
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
66 |
-
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
67 |
-
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
68 |
-
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
69 |
-
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
70 |
-
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
71 |
-
|
72 |
-
def forward(self, x):
|
73 |
-
b, c, h, w = x.shape
|
74 |
-
|
75 |
-
hx = x
|
76 |
-
hxin = self.rebnconvin(hx)
|
77 |
-
|
78 |
-
hx1 = self.rebnconv1(hxin)
|
79 |
-
hx = self.pool1(hx1)
|
80 |
-
|
81 |
-
hx2 = self.rebnconv2(hx)
|
82 |
-
hx = self.pool2(hx2)
|
83 |
-
|
84 |
-
hx3 = self.rebnconv3(hx)
|
85 |
-
hx = self.pool3(hx3)
|
86 |
-
|
87 |
-
hx4 = self.rebnconv4(hx)
|
88 |
-
hx = self.pool4(hx4)
|
89 |
-
|
90 |
-
hx5 = self.rebnconv5(hx)
|
91 |
-
hx = self.pool5(hx5)
|
92 |
-
|
93 |
-
hx6 = self.rebnconv6(hx)
|
94 |
-
|
95 |
-
hx7 = self.rebnconv7(hx6)
|
96 |
-
|
97 |
-
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1))
|
98 |
-
hx6dup = _upsample_like(hx6d, hx5)
|
99 |
-
|
100 |
-
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1))
|
101 |
-
hx5dup = _upsample_like(hx5d, hx4)
|
102 |
-
|
103 |
-
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
104 |
-
hx4dup = _upsample_like(hx4d, hx3)
|
105 |
-
|
106 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
107 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
108 |
-
|
109 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
110 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
111 |
-
|
112 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
113 |
-
|
114 |
-
return hx1d + hxin
|
115 |
-
|
116 |
-
|
117 |
-
### RSU-6 ###
|
118 |
-
class RSU6(nn.Module):
|
119 |
-
|
120 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
121 |
-
super(RSU6, self).__init__()
|
122 |
-
|
123 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
124 |
-
|
125 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
126 |
-
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
127 |
-
|
128 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
129 |
-
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
130 |
-
|
131 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
132 |
-
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
133 |
-
|
134 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
135 |
-
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
136 |
-
|
137 |
-
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
138 |
-
|
139 |
-
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
140 |
-
|
141 |
-
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
142 |
-
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
143 |
-
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
144 |
-
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
145 |
-
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
146 |
-
|
147 |
-
def forward(self, x):
|
148 |
-
|
149 |
-
hx = x
|
150 |
-
|
151 |
-
hxin = self.rebnconvin(hx)
|
152 |
-
|
153 |
-
hx1 = self.rebnconv1(hxin)
|
154 |
-
hx = self.pool1(hx1)
|
155 |
-
|
156 |
-
hx2 = self.rebnconv2(hx)
|
157 |
-
hx = self.pool2(hx2)
|
158 |
-
|
159 |
-
hx3 = self.rebnconv3(hx)
|
160 |
-
hx = self.pool3(hx3)
|
161 |
-
|
162 |
-
hx4 = self.rebnconv4(hx)
|
163 |
-
hx = self.pool4(hx4)
|
164 |
-
|
165 |
-
hx5 = self.rebnconv5(hx)
|
166 |
-
|
167 |
-
hx6 = self.rebnconv6(hx5)
|
168 |
-
|
169 |
-
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1))
|
170 |
-
hx5dup = _upsample_like(hx5d, hx4)
|
171 |
-
|
172 |
-
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
173 |
-
hx4dup = _upsample_like(hx4d, hx3)
|
174 |
-
|
175 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
176 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
177 |
-
|
178 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
179 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
180 |
-
|
181 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
182 |
-
|
183 |
-
return hx1d + hxin
|
184 |
-
|
185 |
-
|
186 |
-
### RSU-5 ###
|
187 |
-
class RSU5(nn.Module):
|
188 |
-
|
189 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
190 |
-
super(RSU5, self).__init__()
|
191 |
-
|
192 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
193 |
-
|
194 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
195 |
-
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
196 |
-
|
197 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
198 |
-
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
199 |
-
|
200 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
201 |
-
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
202 |
-
|
203 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
204 |
-
|
205 |
-
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
206 |
-
|
207 |
-
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
208 |
-
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
209 |
-
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
210 |
-
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
211 |
-
|
212 |
-
def forward(self, x):
|
213 |
-
|
214 |
-
hx = x
|
215 |
-
|
216 |
-
hxin = self.rebnconvin(hx)
|
217 |
-
|
218 |
-
hx1 = self.rebnconv1(hxin)
|
219 |
-
hx = self.pool1(hx1)
|
220 |
-
|
221 |
-
hx2 = self.rebnconv2(hx)
|
222 |
-
hx = self.pool2(hx2)
|
223 |
-
|
224 |
-
hx3 = self.rebnconv3(hx)
|
225 |
-
hx = self.pool3(hx3)
|
226 |
-
|
227 |
-
hx4 = self.rebnconv4(hx)
|
228 |
-
|
229 |
-
hx5 = self.rebnconv5(hx4)
|
230 |
-
|
231 |
-
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1))
|
232 |
-
hx4dup = _upsample_like(hx4d, hx3)
|
233 |
-
|
234 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
235 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
236 |
-
|
237 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
238 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
239 |
-
|
240 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
241 |
-
|
242 |
-
return hx1d + hxin
|
243 |
-
|
244 |
-
|
245 |
-
### RSU-4 ###
|
246 |
-
class RSU4(nn.Module):
|
247 |
-
|
248 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
249 |
-
super(RSU4, self).__init__()
|
250 |
-
|
251 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
252 |
-
|
253 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
254 |
-
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
255 |
-
|
256 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
257 |
-
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
258 |
-
|
259 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
260 |
-
|
261 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
262 |
-
|
263 |
-
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
264 |
-
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
265 |
-
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
266 |
-
|
267 |
-
def forward(self, x):
|
268 |
-
|
269 |
-
hx = x
|
270 |
-
|
271 |
-
hxin = self.rebnconvin(hx)
|
272 |
-
|
273 |
-
hx1 = self.rebnconv1(hxin)
|
274 |
-
hx = self.pool1(hx1)
|
275 |
-
|
276 |
-
hx2 = self.rebnconv2(hx)
|
277 |
-
hx = self.pool2(hx2)
|
278 |
-
|
279 |
-
hx3 = self.rebnconv3(hx)
|
280 |
-
|
281 |
-
hx4 = self.rebnconv4(hx3)
|
282 |
-
|
283 |
-
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
284 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
285 |
-
|
286 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
287 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
288 |
-
|
289 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
290 |
-
|
291 |
-
return hx1d + hxin
|
292 |
-
|
293 |
-
|
294 |
-
### RSU-4F ###
|
295 |
-
class RSU4F(nn.Module):
|
296 |
-
|
297 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
298 |
-
super(RSU4F, self).__init__()
|
299 |
-
|
300 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
301 |
-
|
302 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
303 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
304 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
|
305 |
-
|
306 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
|
307 |
-
|
308 |
-
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4)
|
309 |
-
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2)
|
310 |
-
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
311 |
-
|
312 |
-
def forward(self, x):
|
313 |
-
|
314 |
-
hx = x
|
315 |
-
|
316 |
-
hxin = self.rebnconvin(hx)
|
317 |
-
|
318 |
-
hx1 = self.rebnconv1(hxin)
|
319 |
-
hx2 = self.rebnconv2(hx1)
|
320 |
-
hx3 = self.rebnconv3(hx2)
|
321 |
-
|
322 |
-
hx4 = self.rebnconv4(hx3)
|
323 |
-
|
324 |
-
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
325 |
-
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1))
|
326 |
-
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1))
|
327 |
-
|
328 |
-
return hx1d + hxin
|
329 |
-
|
330 |
-
|
331 |
-
class myrebnconv(nn.Module):
|
332 |
-
def __init__(
|
333 |
-
self,
|
334 |
-
in_ch=3,
|
335 |
-
out_ch=1,
|
336 |
-
kernel_size=3,
|
337 |
-
stride=1,
|
338 |
-
padding=1,
|
339 |
-
dilation=1,
|
340 |
-
groups=1,
|
341 |
-
):
|
342 |
-
super(myrebnconv, self).__init__()
|
343 |
-
|
344 |
-
self.conv = nn.Conv2d(
|
345 |
-
in_ch,
|
346 |
-
out_ch,
|
347 |
-
kernel_size=kernel_size,
|
348 |
-
stride=stride,
|
349 |
-
padding=padding,
|
350 |
-
dilation=dilation,
|
351 |
-
groups=groups,
|
352 |
-
)
|
353 |
-
self.bn = nn.BatchNorm2d(out_ch)
|
354 |
-
self.rl = nn.ReLU(inplace=True)
|
355 |
-
|
356 |
-
def forward(self, x):
|
357 |
-
return self.rl(self.bn(self.conv(x)))
|
358 |
-
|
359 |
-
|
360 |
-
bce_loss = nn.BCELoss(size_average=True)
|
361 |
-
|
362 |
-
|
363 |
-
class ORMBG(nn.Module):
|
364 |
-
|
365 |
-
def __init__(self, in_ch=3, out_ch=1):
|
366 |
-
super(ORMBG, self).__init__()
|
367 |
-
|
368 |
-
self.conv_in = nn.Conv2d(in_ch, 64, 3, stride=2, padding=1)
|
369 |
-
self.pool_in = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
370 |
-
|
371 |
-
self.stage1 = RSU7(64, 32, 64)
|
372 |
-
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
373 |
-
|
374 |
-
self.stage2 = RSU6(64, 32, 128)
|
375 |
-
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
376 |
-
|
377 |
-
self.stage3 = RSU5(128, 64, 256)
|
378 |
-
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
379 |
-
|
380 |
-
self.stage4 = RSU4(256, 128, 512)
|
381 |
-
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
382 |
-
|
383 |
-
self.stage5 = RSU4F(512, 256, 512)
|
384 |
-
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
385 |
-
|
386 |
-
self.stage6 = RSU4F(512, 256, 512)
|
387 |
-
|
388 |
-
# decoder
|
389 |
-
self.stage5d = RSU4F(1024, 256, 512)
|
390 |
-
self.stage4d = RSU4(1024, 128, 256)
|
391 |
-
self.stage3d = RSU5(512, 64, 128)
|
392 |
-
self.stage2d = RSU6(256, 32, 64)
|
393 |
-
self.stage1d = RSU7(128, 16, 64)
|
394 |
-
|
395 |
-
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
396 |
-
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
397 |
-
self.side3 = nn.Conv2d(128, out_ch, 3, padding=1)
|
398 |
-
self.side4 = nn.Conv2d(256, out_ch, 3, padding=1)
|
399 |
-
self.side5 = nn.Conv2d(512, out_ch, 3, padding=1)
|
400 |
-
self.side6 = nn.Conv2d(512, out_ch, 3, padding=1)
|
401 |
-
|
402 |
-
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
403 |
-
|
404 |
-
def compute_loss(self, predictions, ground_truth):
|
405 |
-
loss0, loss = 0.0, 0.0
|
406 |
-
for i in range(0, len(predictions)):
|
407 |
-
loss = loss + bce_loss(predictions[i], ground_truth)
|
408 |
-
if i == 0:
|
409 |
-
loss0 = loss
|
410 |
-
return loss0, loss
|
411 |
-
|
412 |
-
def forward(self, x):
|
413 |
-
|
414 |
-
hx = x
|
415 |
-
|
416 |
-
hxin = self.conv_in(hx)
|
417 |
-
# hx = self.pool_in(hxin)
|
418 |
-
|
419 |
-
# stage 1
|
420 |
-
hx1 = self.stage1(hxin)
|
421 |
-
hx = self.pool12(hx1)
|
422 |
-
|
423 |
-
# stage 2
|
424 |
-
hx2 = self.stage2(hx)
|
425 |
-
hx = self.pool23(hx2)
|
426 |
-
|
427 |
-
# stage 3
|
428 |
-
hx3 = self.stage3(hx)
|
429 |
-
hx = self.pool34(hx3)
|
430 |
-
|
431 |
-
# stage 4
|
432 |
-
hx4 = self.stage4(hx)
|
433 |
-
hx = self.pool45(hx4)
|
434 |
-
|
435 |
-
# stage 5
|
436 |
-
hx5 = self.stage5(hx)
|
437 |
-
hx = self.pool56(hx5)
|
438 |
-
|
439 |
-
# stage 6
|
440 |
-
hx6 = self.stage6(hx)
|
441 |
-
hx6up = _upsample_like(hx6, hx5)
|
442 |
-
|
443 |
-
# -------------------- decoder --------------------
|
444 |
-
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
445 |
-
hx5dup = _upsample_like(hx5d, hx4)
|
446 |
-
|
447 |
-
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
448 |
-
hx4dup = _upsample_like(hx4d, hx3)
|
449 |
-
|
450 |
-
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
451 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
452 |
-
|
453 |
-
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
454 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
455 |
-
|
456 |
-
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
457 |
-
|
458 |
-
# side output
|
459 |
-
d1 = self.side1(hx1d)
|
460 |
-
d1 = _upsample_like(d1, x)
|
461 |
-
|
462 |
-
d2 = self.side2(hx2d)
|
463 |
-
d2 = _upsample_like(d2, x)
|
464 |
-
|
465 |
-
d3 = self.side3(hx3d)
|
466 |
-
d3 = _upsample_like(d3, x)
|
467 |
-
|
468 |
-
d4 = self.side4(hx4d)
|
469 |
-
d4 = _upsample_like(d4, x)
|
470 |
-
|
471 |
-
d5 = self.side5(hx5d)
|
472 |
-
d5 = _upsample_like(d5, x)
|
473 |
-
|
474 |
-
d6 = self.side6(hx6)
|
475 |
-
d6 = _upsample_like(d6, x)
|
476 |
-
|
477 |
-
return [
|
478 |
-
F.sigmoid(d1),
|
479 |
-
F.sigmoid(d2),
|
480 |
-
F.sigmoid(d3),
|
481 |
-
F.sigmoid(d4),
|
482 |
-
F.sigmoid(d5),
|
483 |
-
F.sigmoid(d6),
|
484 |
-
], [hx1d, hx2d, hx3d, hx4d, hx5d, hx6]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input.png
DELETED
Git LFS Details
|
ormbg/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
ormbg/basics.py
DELETED
@@ -1,79 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
# os.environ['CUDA_VISIBLE_DEVICES'] = '2'
|
4 |
-
from skimage import io, transform
|
5 |
-
import torch
|
6 |
-
import torchvision
|
7 |
-
from torch.autograd import Variable
|
8 |
-
import torch.nn as nn
|
9 |
-
import torch.nn.functional as F
|
10 |
-
from torch.utils.data import Dataset, DataLoader
|
11 |
-
from torchvision import transforms, utils
|
12 |
-
import torch.optim as optim
|
13 |
-
|
14 |
-
import matplotlib.pyplot as plt
|
15 |
-
import numpy as np
|
16 |
-
from PIL import Image
|
17 |
-
import glob
|
18 |
-
|
19 |
-
|
20 |
-
def mae_torch(pred, gt):
|
21 |
-
|
22 |
-
h, w = gt.shape[0:2]
|
23 |
-
sumError = torch.sum(torch.absolute(torch.sub(pred.float(), gt.float())))
|
24 |
-
maeError = torch.divide(sumError, float(h) * float(w) * 255.0 + 1e-4)
|
25 |
-
|
26 |
-
return maeError
|
27 |
-
|
28 |
-
|
29 |
-
def f1score_torch(pd, gt):
|
30 |
-
|
31 |
-
# print(gt.shape)
|
32 |
-
gtNum = torch.sum((gt > 128).float() * 1) ## number of ground truth pixels
|
33 |
-
|
34 |
-
pp = pd[gt > 128]
|
35 |
-
nn = pd[gt <= 128]
|
36 |
-
|
37 |
-
pp_hist = torch.histc(pp, bins=255, min=0, max=255)
|
38 |
-
nn_hist = torch.histc(nn, bins=255, min=0, max=255)
|
39 |
-
|
40 |
-
pp_hist_flip = torch.flipud(pp_hist)
|
41 |
-
nn_hist_flip = torch.flipud(nn_hist)
|
42 |
-
|
43 |
-
pp_hist_flip_cum = torch.cumsum(pp_hist_flip, dim=0)
|
44 |
-
nn_hist_flip_cum = torch.cumsum(nn_hist_flip, dim=0)
|
45 |
-
|
46 |
-
precision = (pp_hist_flip_cum) / (
|
47 |
-
pp_hist_flip_cum + nn_hist_flip_cum + 1e-4
|
48 |
-
) # torch.divide(pp_hist_flip_cum,torch.sum(torch.sum(pp_hist_flip_cum, nn_hist_flip_cum), 1e-4))
|
49 |
-
recall = (pp_hist_flip_cum) / (gtNum + 1e-4)
|
50 |
-
f1 = (1 + 0.3) * precision * recall / (0.3 * precision + recall + 1e-4)
|
51 |
-
|
52 |
-
return (
|
53 |
-
torch.reshape(precision, (1, precision.shape[0])),
|
54 |
-
torch.reshape(recall, (1, recall.shape[0])),
|
55 |
-
torch.reshape(f1, (1, f1.shape[0])),
|
56 |
-
)
|
57 |
-
|
58 |
-
|
59 |
-
def f1_mae_torch(pred, gt, valid_dataset, idx, mybins, hypar):
|
60 |
-
|
61 |
-
import time
|
62 |
-
|
63 |
-
tic = time.time()
|
64 |
-
|
65 |
-
if len(gt.shape) > 2:
|
66 |
-
gt = gt[:, :, 0]
|
67 |
-
|
68 |
-
pre, rec, f1 = f1score_torch(pred, gt)
|
69 |
-
mae = mae_torch(pred, gt)
|
70 |
-
|
71 |
-
print(valid_dataset.dataset["im_name"][idx] + ".png")
|
72 |
-
print("time for evaluation : ", time.time() - tic)
|
73 |
-
|
74 |
-
return (
|
75 |
-
pre.cpu().data.numpy(),
|
76 |
-
rec.cpu().data.numpy(),
|
77 |
-
f1.cpu().data.numpy(),
|
78 |
-
mae.cpu().data.numpy(),
|
79 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ormbg/data_loader_cache.py
DELETED
@@ -1,489 +0,0 @@
|
|
1 |
-
## data loader
|
2 |
-
## Ackownledgement:
|
3 |
-
## We would like to thank Dr. Ibrahim Almakky (https://scholar.google.co.uk/citations?user=T9MTcK0AAAAJ&hl=en)
|
4 |
-
## for his helps in implementing cache machanism of our DIS dataloader.
|
5 |
-
from __future__ import print_function, division
|
6 |
-
|
7 |
-
import albumentations as A
|
8 |
-
import numpy as np
|
9 |
-
import random
|
10 |
-
from copy import deepcopy
|
11 |
-
import json
|
12 |
-
from tqdm import tqdm
|
13 |
-
from skimage import io
|
14 |
-
import os
|
15 |
-
from glob import glob
|
16 |
-
|
17 |
-
import torch
|
18 |
-
from torch.utils.data import Dataset, DataLoader
|
19 |
-
from torchvision import transforms
|
20 |
-
from torchvision.transforms.functional import normalize
|
21 |
-
import torch.nn.functional as F
|
22 |
-
|
23 |
-
#### --------------------- DIS dataloader cache ---------------------####
|
24 |
-
|
25 |
-
|
26 |
-
def get_im_gt_name_dict(datasets, flag="valid"):
|
27 |
-
print("------------------------------", flag, "--------------------------------")
|
28 |
-
name_im_gt_list = []
|
29 |
-
for i in range(len(datasets)):
|
30 |
-
print(
|
31 |
-
"--->>>",
|
32 |
-
flag,
|
33 |
-
" dataset ",
|
34 |
-
i,
|
35 |
-
"/",
|
36 |
-
len(datasets),
|
37 |
-
" ",
|
38 |
-
datasets[i]["name"],
|
39 |
-
"<<<---",
|
40 |
-
)
|
41 |
-
tmp_im_list, tmp_gt_list = [], []
|
42 |
-
im_dir = datasets[i]["im_dir"]
|
43 |
-
gt_dir = datasets[i]["gt_dir"]
|
44 |
-
tmp_im_list = glob(os.path.join(im_dir, "*" + "*.[jp][pn]g"))
|
45 |
-
tmp_gt_list = glob(os.path.join(gt_dir, "*" + "*.[jp][pn]g"))
|
46 |
-
|
47 |
-
print(
|
48 |
-
"-im-", datasets[i]["name"], datasets[i]["im_dir"], ": ", len(tmp_im_list)
|
49 |
-
)
|
50 |
-
|
51 |
-
print(
|
52 |
-
"-gt-",
|
53 |
-
datasets[i]["name"],
|
54 |
-
datasets[i]["gt_dir"],
|
55 |
-
": ",
|
56 |
-
len(tmp_gt_list),
|
57 |
-
)
|
58 |
-
|
59 |
-
if flag == "train": ## combine multiple training sets into one dataset
|
60 |
-
if len(name_im_gt_list) == 0:
|
61 |
-
name_im_gt_list.append(
|
62 |
-
{
|
63 |
-
"dataset_name": datasets[i]["name"],
|
64 |
-
"im_path": tmp_im_list,
|
65 |
-
"gt_path": tmp_gt_list,
|
66 |
-
"im_ext": datasets[i]["im_ext"],
|
67 |
-
"gt_ext": datasets[i]["gt_ext"],
|
68 |
-
"cache_dir": datasets[i]["cache_dir"],
|
69 |
-
}
|
70 |
-
)
|
71 |
-
else:
|
72 |
-
name_im_gt_list[0]["dataset_name"] = (
|
73 |
-
name_im_gt_list[0]["dataset_name"] + "_" + datasets[i]["name"]
|
74 |
-
)
|
75 |
-
name_im_gt_list[0]["im_path"] = (
|
76 |
-
name_im_gt_list[0]["im_path"] + tmp_im_list
|
77 |
-
)
|
78 |
-
name_im_gt_list[0]["gt_path"] = (
|
79 |
-
name_im_gt_list[0]["gt_path"] + tmp_gt_list
|
80 |
-
)
|
81 |
-
if datasets[i]["im_ext"] != ".jpg" or datasets[i]["gt_ext"] != ".png":
|
82 |
-
print(
|
83 |
-
"Error: Please make sure all you images and ground truth masks are in jpg and png format respectively !!!"
|
84 |
-
)
|
85 |
-
exit()
|
86 |
-
name_im_gt_list[0]["im_ext"] = ".jpg"
|
87 |
-
name_im_gt_list[0]["gt_ext"] = ".png"
|
88 |
-
name_im_gt_list[0]["cache_dir"] = (
|
89 |
-
os.sep.join(datasets[i]["cache_dir"].split(os.sep)[0:-1])
|
90 |
-
+ os.sep
|
91 |
-
+ name_im_gt_list[0]["dataset_name"]
|
92 |
-
)
|
93 |
-
else: ## keep different validation or inference datasets as separate ones
|
94 |
-
name_im_gt_list.append(
|
95 |
-
{
|
96 |
-
"dataset_name": datasets[i]["name"],
|
97 |
-
"im_path": tmp_im_list,
|
98 |
-
"gt_path": tmp_gt_list,
|
99 |
-
"im_ext": datasets[i]["im_ext"],
|
100 |
-
"gt_ext": datasets[i]["gt_ext"],
|
101 |
-
"cache_dir": datasets[i]["cache_dir"],
|
102 |
-
}
|
103 |
-
)
|
104 |
-
|
105 |
-
return name_im_gt_list
|
106 |
-
|
107 |
-
|
108 |
-
def create_dataloaders(
|
109 |
-
name_im_gt_list,
|
110 |
-
cache_size=[],
|
111 |
-
cache_boost=True,
|
112 |
-
my_transforms=[],
|
113 |
-
batch_size=1,
|
114 |
-
shuffle=False,
|
115 |
-
):
|
116 |
-
## model="train": return one dataloader for training
|
117 |
-
## model="valid": return a list of dataloaders for validation or testing
|
118 |
-
|
119 |
-
gos_dataloaders = []
|
120 |
-
gos_datasets = []
|
121 |
-
|
122 |
-
if len(name_im_gt_list) == 0:
|
123 |
-
return gos_dataloaders, gos_datasets
|
124 |
-
|
125 |
-
num_workers_ = 1
|
126 |
-
if batch_size > 1:
|
127 |
-
num_workers_ = 2
|
128 |
-
if batch_size > 4:
|
129 |
-
num_workers_ = 4
|
130 |
-
if batch_size > 8:
|
131 |
-
num_workers_ = 8
|
132 |
-
|
133 |
-
for i in range(0, len(name_im_gt_list)):
|
134 |
-
gos_dataset = GOSDatasetCache(
|
135 |
-
[name_im_gt_list[i]],
|
136 |
-
cache_size=cache_size,
|
137 |
-
cache_path=name_im_gt_list[i]["cache_dir"],
|
138 |
-
cache_boost=cache_boost,
|
139 |
-
transform=transforms.Compose(my_transforms),
|
140 |
-
)
|
141 |
-
gos_dataloaders.append(
|
142 |
-
DataLoader(
|
143 |
-
gos_dataset,
|
144 |
-
batch_size=batch_size,
|
145 |
-
shuffle=shuffle,
|
146 |
-
num_workers=num_workers_,
|
147 |
-
)
|
148 |
-
)
|
149 |
-
gos_datasets.append(gos_dataset)
|
150 |
-
|
151 |
-
return gos_dataloaders, gos_datasets
|
152 |
-
|
153 |
-
|
154 |
-
def im_reader(im_path):
|
155 |
-
return io.imread(im_path)
|
156 |
-
|
157 |
-
|
158 |
-
def im_preprocess(im, size):
|
159 |
-
if len(im.shape) < 3:
|
160 |
-
im = im[:, :, np.newaxis]
|
161 |
-
if im.shape[2] == 1:
|
162 |
-
im = np.repeat(im, 3, axis=2)
|
163 |
-
im_tensor = torch.tensor(im.copy(), dtype=torch.float32)
|
164 |
-
im_tensor = torch.transpose(torch.transpose(im_tensor, 1, 2), 0, 1)
|
165 |
-
if len(size) < 2:
|
166 |
-
return im_tensor, im.shape[0:2]
|
167 |
-
else:
|
168 |
-
im_tensor = torch.unsqueeze(im_tensor, 0)
|
169 |
-
im_tensor = F.upsample(im_tensor, size, mode="bilinear")
|
170 |
-
im_tensor = torch.squeeze(im_tensor, 0)
|
171 |
-
|
172 |
-
return im_tensor.type(torch.uint8), im.shape[0:2]
|
173 |
-
|
174 |
-
|
175 |
-
def gt_preprocess(gt, size):
|
176 |
-
if len(gt.shape) > 2:
|
177 |
-
gt = gt[:, :, 0]
|
178 |
-
|
179 |
-
gt_tensor = torch.unsqueeze(torch.tensor(gt, dtype=torch.uint8), 0)
|
180 |
-
|
181 |
-
if len(size) < 2:
|
182 |
-
return gt_tensor.type(torch.uint8), gt.shape[0:2]
|
183 |
-
else:
|
184 |
-
gt_tensor = torch.unsqueeze(torch.tensor(gt_tensor, dtype=torch.float32), 0)
|
185 |
-
gt_tensor = F.upsample(gt_tensor, size, mode="bilinear")
|
186 |
-
gt_tensor = torch.squeeze(gt_tensor, 0)
|
187 |
-
|
188 |
-
return gt_tensor.type(torch.uint8), gt.shape[0:2]
|
189 |
-
# return gt_tensor, gt.shape[0:2]
|
190 |
-
|
191 |
-
|
192 |
-
class GOSGridDropout(object):
|
193 |
-
def __init__(
|
194 |
-
self,
|
195 |
-
ratio=0.5,
|
196 |
-
unit_size_min=100,
|
197 |
-
unit_size_max=100,
|
198 |
-
holes_number_x=None,
|
199 |
-
holes_number_y=None,
|
200 |
-
shift_x=0,
|
201 |
-
shift_y=0,
|
202 |
-
random_offset=True,
|
203 |
-
fill_value=0,
|
204 |
-
mask_fill_value=None,
|
205 |
-
always_apply=None,
|
206 |
-
p=1.0,
|
207 |
-
):
|
208 |
-
self.transform = A.GridDropout(
|
209 |
-
ratio=ratio,
|
210 |
-
unit_size_min=unit_size_min,
|
211 |
-
unit_size_max=unit_size_max,
|
212 |
-
holes_number_x=holes_number_x,
|
213 |
-
holes_number_y=holes_number_y,
|
214 |
-
shift_x=shift_x,
|
215 |
-
shift_y=shift_y,
|
216 |
-
random_offset=random_offset,
|
217 |
-
fill_value=fill_value,
|
218 |
-
mask_fill_value=mask_fill_value,
|
219 |
-
always_apply=always_apply,
|
220 |
-
p=p,
|
221 |
-
)
|
222 |
-
|
223 |
-
def __call__(self, sample):
|
224 |
-
imidx, image, label, shape = (
|
225 |
-
sample["imidx"],
|
226 |
-
sample["image"],
|
227 |
-
sample["label"],
|
228 |
-
sample["shape"],
|
229 |
-
)
|
230 |
-
|
231 |
-
# Convert the torch tensors to numpy arrays
|
232 |
-
image_np = image.permute(1, 2, 0).numpy()
|
233 |
-
|
234 |
-
augmented = self.transform(image=image_np)
|
235 |
-
|
236 |
-
# Convert the numpy arrays back to torch tensors
|
237 |
-
image = torch.tensor(augmented["image"]).permute(2, 0, 1)
|
238 |
-
|
239 |
-
return {"imidx": imidx, "image": image, "label": label, "shape": shape}
|
240 |
-
|
241 |
-
|
242 |
-
class GOSRandomHFlip(object):
|
243 |
-
def __init__(self, prob=0.5):
|
244 |
-
self.prob = prob
|
245 |
-
|
246 |
-
def __call__(self, sample):
|
247 |
-
imidx, image, label, shape = (
|
248 |
-
sample["imidx"],
|
249 |
-
sample["image"],
|
250 |
-
sample["label"],
|
251 |
-
sample["shape"],
|
252 |
-
)
|
253 |
-
|
254 |
-
# random horizontal flip
|
255 |
-
if random.random() >= self.prob:
|
256 |
-
image = torch.flip(image, dims=[2])
|
257 |
-
label = torch.flip(label, dims=[2])
|
258 |
-
|
259 |
-
return {"imidx": imidx, "image": image, "label": label, "shape": shape}
|
260 |
-
|
261 |
-
|
262 |
-
class GOSDatasetCache(Dataset):
|
263 |
-
|
264 |
-
def __init__(
|
265 |
-
self,
|
266 |
-
name_im_gt_list,
|
267 |
-
cache_size=[],
|
268 |
-
cache_path="./cache",
|
269 |
-
cache_file_name="dataset.json",
|
270 |
-
cache_boost=False,
|
271 |
-
transform=None,
|
272 |
-
):
|
273 |
-
|
274 |
-
self.cache_size = cache_size
|
275 |
-
self.cache_path = cache_path
|
276 |
-
self.cache_file_name = cache_file_name
|
277 |
-
self.cache_boost_name = ""
|
278 |
-
|
279 |
-
self.cache_boost = cache_boost
|
280 |
-
# self.ims_npy = None
|
281 |
-
# self.gts_npy = None
|
282 |
-
|
283 |
-
## cache all the images and ground truth into a single pytorch tensor
|
284 |
-
self.ims_pt = None
|
285 |
-
self.gts_pt = None
|
286 |
-
|
287 |
-
## we will cache the npy as well regardless of the cache_boost
|
288 |
-
# if(self.cache_boost):
|
289 |
-
self.cache_boost_name = cache_file_name.split(".json")[0]
|
290 |
-
|
291 |
-
self.transform = transform
|
292 |
-
|
293 |
-
self.dataset = {}
|
294 |
-
|
295 |
-
## combine different datasets into one
|
296 |
-
dataset_names = []
|
297 |
-
dt_name_list = [] # dataset name per image
|
298 |
-
im_name_list = [] # image name
|
299 |
-
im_path_list = [] # im path
|
300 |
-
gt_path_list = [] # gt path
|
301 |
-
im_ext_list = [] # im ext
|
302 |
-
gt_ext_list = [] # gt ext
|
303 |
-
for i in range(0, len(name_im_gt_list)):
|
304 |
-
dataset_names.append(name_im_gt_list[i]["dataset_name"])
|
305 |
-
# dataset name repeated based on the number of images in this dataset
|
306 |
-
dt_name_list.extend(
|
307 |
-
[
|
308 |
-
name_im_gt_list[i]["dataset_name"]
|
309 |
-
for x in name_im_gt_list[i]["im_path"]
|
310 |
-
]
|
311 |
-
)
|
312 |
-
im_name_list.extend(
|
313 |
-
[
|
314 |
-
x.split(os.sep)[-1].split(name_im_gt_list[i]["im_ext"])[0]
|
315 |
-
for x in name_im_gt_list[i]["im_path"]
|
316 |
-
]
|
317 |
-
)
|
318 |
-
im_path_list.extend(name_im_gt_list[i]["im_path"])
|
319 |
-
gt_path_list.extend(name_im_gt_list[i]["gt_path"])
|
320 |
-
im_ext_list.extend(
|
321 |
-
[name_im_gt_list[i]["im_ext"] for x in name_im_gt_list[i]["im_path"]]
|
322 |
-
)
|
323 |
-
gt_ext_list.extend(
|
324 |
-
[name_im_gt_list[i]["gt_ext"] for x in name_im_gt_list[i]["gt_path"]]
|
325 |
-
)
|
326 |
-
|
327 |
-
self.dataset["data_name"] = dt_name_list
|
328 |
-
self.dataset["im_name"] = im_name_list
|
329 |
-
self.dataset["im_path"] = im_path_list
|
330 |
-
self.dataset["ori_im_path"] = deepcopy(im_path_list)
|
331 |
-
self.dataset["gt_path"] = gt_path_list
|
332 |
-
self.dataset["ori_gt_path"] = deepcopy(gt_path_list)
|
333 |
-
self.dataset["im_shp"] = []
|
334 |
-
self.dataset["gt_shp"] = []
|
335 |
-
self.dataset["im_ext"] = im_ext_list
|
336 |
-
self.dataset["gt_ext"] = gt_ext_list
|
337 |
-
|
338 |
-
self.dataset["ims_pt_dir"] = ""
|
339 |
-
self.dataset["gts_pt_dir"] = ""
|
340 |
-
|
341 |
-
self.dataset = self.manage_cache(dataset_names)
|
342 |
-
|
343 |
-
def manage_cache(self, dataset_names):
|
344 |
-
if not os.path.exists(self.cache_path): # create the folder for cache
|
345 |
-
os.makedirs(self.cache_path)
|
346 |
-
cache_folder = os.path.join(
|
347 |
-
self.cache_path,
|
348 |
-
"_".join(dataset_names) + "_" + "x".join([str(x) for x in self.cache_size]),
|
349 |
-
)
|
350 |
-
if not os.path.exists(
|
351 |
-
cache_folder
|
352 |
-
): # check if the cache files are there, if not then cache
|
353 |
-
return self.cache(cache_folder)
|
354 |
-
return self.load_cache(cache_folder)
|
355 |
-
|
356 |
-
def cache(self, cache_folder):
|
357 |
-
os.mkdir(cache_folder)
|
358 |
-
cached_dataset = deepcopy(self.dataset)
|
359 |
-
|
360 |
-
# ims_list = []
|
361 |
-
# gts_list = []
|
362 |
-
ims_pt_list = []
|
363 |
-
gts_pt_list = []
|
364 |
-
for i, im_path in tqdm(
|
365 |
-
enumerate(self.dataset["im_path"]), total=len(self.dataset["im_path"])
|
366 |
-
):
|
367 |
-
|
368 |
-
im_id = cached_dataset["im_name"][i]
|
369 |
-
print("im_path: ", im_path)
|
370 |
-
im = im_reader(im_path)
|
371 |
-
im, im_shp = im_preprocess(im, self.cache_size)
|
372 |
-
im_cache_file = os.path.join(
|
373 |
-
cache_folder, self.dataset["data_name"][i] + "_" + im_id + "_im.pt"
|
374 |
-
)
|
375 |
-
torch.save(im, im_cache_file)
|
376 |
-
|
377 |
-
cached_dataset["im_path"][i] = im_cache_file
|
378 |
-
if self.cache_boost:
|
379 |
-
ims_pt_list.append(torch.unsqueeze(im, 0))
|
380 |
-
# ims_list.append(im.cpu().data.numpy().astype(np.uint8))
|
381 |
-
|
382 |
-
gt = np.zeros(im.shape[0:2])
|
383 |
-
if len(self.dataset["gt_path"]) != 0:
|
384 |
-
gt = im_reader(self.dataset["gt_path"][i])
|
385 |
-
gt, gt_shp = gt_preprocess(gt, self.cache_size)
|
386 |
-
gt_cache_file = os.path.join(
|
387 |
-
cache_folder, self.dataset["data_name"][i] + "_" + im_id + "_gt.pt"
|
388 |
-
)
|
389 |
-
torch.save(gt, gt_cache_file)
|
390 |
-
if len(self.dataset["gt_path"]) > 0:
|
391 |
-
cached_dataset["gt_path"][i] = gt_cache_file
|
392 |
-
else:
|
393 |
-
cached_dataset["gt_path"].append(gt_cache_file)
|
394 |
-
if self.cache_boost:
|
395 |
-
gts_pt_list.append(torch.unsqueeze(gt, 0))
|
396 |
-
# gts_list.append(gt.cpu().data.numpy().astype(np.uint8))
|
397 |
-
|
398 |
-
# im_shp_cache_file = os.path.join(cache_folder,im_id + "_im_shp.pt")
|
399 |
-
# torch.save(gt_shp, shp_cache_file)
|
400 |
-
cached_dataset["im_shp"].append(im_shp)
|
401 |
-
# self.dataset["im_shp"].append(im_shp)
|
402 |
-
|
403 |
-
# shp_cache_file = os.path.join(cache_folder,im_id + "_gt_shp.pt")
|
404 |
-
# torch.save(gt_shp, shp_cache_file)
|
405 |
-
cached_dataset["gt_shp"].append(gt_shp)
|
406 |
-
# self.dataset["gt_shp"].append(gt_shp)
|
407 |
-
|
408 |
-
if self.cache_boost:
|
409 |
-
cached_dataset["ims_pt_dir"] = os.path.join(
|
410 |
-
cache_folder, self.cache_boost_name + "_ims.pt"
|
411 |
-
)
|
412 |
-
cached_dataset["gts_pt_dir"] = os.path.join(
|
413 |
-
cache_folder, self.cache_boost_name + "_gts.pt"
|
414 |
-
)
|
415 |
-
self.ims_pt = torch.cat(ims_pt_list, dim=0)
|
416 |
-
self.gts_pt = torch.cat(gts_pt_list, dim=0)
|
417 |
-
torch.save(torch.cat(ims_pt_list, dim=0), cached_dataset["ims_pt_dir"])
|
418 |
-
torch.save(torch.cat(gts_pt_list, dim=0), cached_dataset["gts_pt_dir"])
|
419 |
-
|
420 |
-
try:
|
421 |
-
json_file = open(os.path.join(cache_folder, self.cache_file_name), "w")
|
422 |
-
json.dump(cached_dataset, json_file)
|
423 |
-
json_file.close()
|
424 |
-
except Exception:
|
425 |
-
raise FileNotFoundError("Cannot create JSON")
|
426 |
-
return cached_dataset
|
427 |
-
|
428 |
-
def load_cache(self, cache_folder):
|
429 |
-
json_file = open(os.path.join(cache_folder, self.cache_file_name), "r")
|
430 |
-
dataset = json.load(json_file)
|
431 |
-
json_file.close()
|
432 |
-
## if cache_boost is true, we will load the image npy and ground truth npy into the RAM
|
433 |
-
## otherwise the pytorch tensor will be loaded
|
434 |
-
if self.cache_boost:
|
435 |
-
# self.ims_npy = np.load(dataset["ims_npy_dir"])
|
436 |
-
# self.gts_npy = np.load(dataset["gts_npy_dir"])
|
437 |
-
self.ims_pt = torch.load(dataset["ims_pt_dir"], map_location="cpu")
|
438 |
-
self.gts_pt = torch.load(dataset["gts_pt_dir"], map_location="cpu")
|
439 |
-
return dataset
|
440 |
-
|
441 |
-
def __len__(self):
|
442 |
-
return len(self.dataset["im_path"])
|
443 |
-
|
444 |
-
def __getitem__(self, idx):
|
445 |
-
|
446 |
-
im = None
|
447 |
-
gt = None
|
448 |
-
if self.cache_boost and self.ims_pt is not None:
|
449 |
-
|
450 |
-
# start = time.time()
|
451 |
-
im = self.ims_pt[idx] # .type(torch.float32)
|
452 |
-
gt = self.gts_pt[idx] # .type(torch.float32)
|
453 |
-
# print(idx, 'time for pt loading: ', time.time()-start)
|
454 |
-
|
455 |
-
else:
|
456 |
-
# import time
|
457 |
-
# start = time.time()
|
458 |
-
# print("tensor***")
|
459 |
-
im_pt_path = os.path.join(
|
460 |
-
self.cache_path,
|
461 |
-
os.sep.join(self.dataset["im_path"][idx].split(os.sep)[-2:]),
|
462 |
-
)
|
463 |
-
im = torch.load(im_pt_path) # (self.dataset["im_path"][idx])
|
464 |
-
gt_pt_path = os.path.join(
|
465 |
-
self.cache_path,
|
466 |
-
os.sep.join(self.dataset["gt_path"][idx].split(os.sep)[-2:]),
|
467 |
-
)
|
468 |
-
gt = torch.load(gt_pt_path) # (self.dataset["gt_path"][idx])
|
469 |
-
# print(idx,'time for tensor loading: ', time.time()-start)
|
470 |
-
|
471 |
-
im_shp = self.dataset["im_shp"][idx]
|
472 |
-
# print("time for loading im and gt: ", time.time()-start)
|
473 |
-
|
474 |
-
# start_time = time.time()
|
475 |
-
im = torch.divide(im, 255.0)
|
476 |
-
gt = torch.divide(gt, 255.0)
|
477 |
-
# print(idx, 'time for normalize torch divide: ', time.time()-start_time)
|
478 |
-
|
479 |
-
sample = {
|
480 |
-
"imidx": torch.from_numpy(np.array(idx)),
|
481 |
-
"image": im,
|
482 |
-
"label": gt,
|
483 |
-
"shape": torch.from_numpy(np.array(im_shp)),
|
484 |
-
}
|
485 |
-
|
486 |
-
if self.transform:
|
487 |
-
sample = self.transform(sample)
|
488 |
-
|
489 |
-
return sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ormbg/inference.py
DELETED
@@ -1,110 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import argparse
|
4 |
-
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
-
from skimage import io
|
7 |
-
from models.ormbg import ORMBG
|
8 |
-
import torch.nn.functional as F
|
9 |
-
|
10 |
-
|
11 |
-
def parse_args():
|
12 |
-
parser = argparse.ArgumentParser(
|
13 |
-
description="Remove background from images using ORMBG model."
|
14 |
-
)
|
15 |
-
parser.add_argument(
|
16 |
-
"--image",
|
17 |
-
type=str,
|
18 |
-
default=os.path.join("examples", "image", "example01.jpeg"),
|
19 |
-
help="Path to the input image file.",
|
20 |
-
)
|
21 |
-
parser.add_argument(
|
22 |
-
"--output",
|
23 |
-
type=str,
|
24 |
-
default=os.path.join("example01_no_background.png"),
|
25 |
-
help="Path to the output image file.",
|
26 |
-
)
|
27 |
-
parser.add_argument(
|
28 |
-
"--model-path",
|
29 |
-
type=str,
|
30 |
-
default=os.path.join("models", "ormbg.pth"),
|
31 |
-
help="Path to the model file.",
|
32 |
-
)
|
33 |
-
parser.add_argument(
|
34 |
-
"--compare",
|
35 |
-
action="store_false",
|
36 |
-
help="Flag to save the original and processed images side by side.",
|
37 |
-
)
|
38 |
-
return parser.parse_args()
|
39 |
-
|
40 |
-
|
41 |
-
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor:
|
42 |
-
if len(im.shape) < 3:
|
43 |
-
im = im[:, :, np.newaxis]
|
44 |
-
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1)
|
45 |
-
im_tensor = F.interpolate(
|
46 |
-
torch.unsqueeze(im_tensor, 0), size=model_input_size, mode="bilinear"
|
47 |
-
).type(torch.uint8)
|
48 |
-
image = torch.divide(im_tensor, 255.0)
|
49 |
-
return image
|
50 |
-
|
51 |
-
|
52 |
-
def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray:
|
53 |
-
result = torch.squeeze(F.interpolate(result, size=im_size, mode="bilinear"), 0)
|
54 |
-
ma = torch.max(result)
|
55 |
-
mi = torch.min(result)
|
56 |
-
result = (result - mi) / (ma - mi)
|
57 |
-
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8)
|
58 |
-
im_array = np.squeeze(im_array)
|
59 |
-
return im_array
|
60 |
-
|
61 |
-
|
62 |
-
def inference(args):
|
63 |
-
image_path = args.image
|
64 |
-
result_name = args.output
|
65 |
-
model_path = args.model_path
|
66 |
-
compare = args.compare
|
67 |
-
|
68 |
-
net = ORMBG()
|
69 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
70 |
-
|
71 |
-
if torch.cuda.is_available():
|
72 |
-
net.load_state_dict(torch.load(model_path))
|
73 |
-
net = net.cuda()
|
74 |
-
else:
|
75 |
-
net.load_state_dict(torch.load(model_path, map_location="cpu"))
|
76 |
-
net.eval()
|
77 |
-
|
78 |
-
model_input_size = [1024, 1024]
|
79 |
-
orig_im = io.imread(image_path)
|
80 |
-
orig_im_size = orig_im.shape[0:2]
|
81 |
-
image = preprocess_image(orig_im, model_input_size).to(device)
|
82 |
-
|
83 |
-
result = net(image)
|
84 |
-
|
85 |
-
# post process
|
86 |
-
result_image = postprocess_image(result[0][0], orig_im_size)
|
87 |
-
|
88 |
-
# save result
|
89 |
-
pil_im = Image.fromarray(result_image)
|
90 |
-
|
91 |
-
if pil_im.mode == "RGBA":
|
92 |
-
pil_im = pil_im.convert("RGB")
|
93 |
-
|
94 |
-
no_bg_image = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
|
95 |
-
orig_image = Image.open(image_path)
|
96 |
-
no_bg_image.paste(orig_image, mask=pil_im)
|
97 |
-
|
98 |
-
if compare:
|
99 |
-
combined_width = orig_image.width + no_bg_image.width
|
100 |
-
combined_image = Image.new("RGBA", (combined_width, orig_image.height))
|
101 |
-
combined_image.paste(orig_image, (0, 0))
|
102 |
-
combined_image.paste(no_bg_image, (orig_image.width, 0))
|
103 |
-
stacked_output_path = os.path.splitext(result_name)[0] + ".png"
|
104 |
-
combined_image.save(stacked_output_path)
|
105 |
-
else:
|
106 |
-
no_bg_image.save(result_name)
|
107 |
-
|
108 |
-
|
109 |
-
if __name__ == "__main__":
|
110 |
-
inference(parse_args())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ormbg/models/ormbg.py
DELETED
@@ -1,484 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
# https://github.com/xuebinqin/DIS/blob/main/IS-Net/models/isnet.py
|
6 |
-
|
7 |
-
|
8 |
-
class REBNCONV(nn.Module):
|
9 |
-
def __init__(self, in_ch=3, out_ch=3, dirate=1, stride=1):
|
10 |
-
super(REBNCONV, self).__init__()
|
11 |
-
|
12 |
-
self.conv_s1 = nn.Conv2d(
|
13 |
-
in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate, stride=stride
|
14 |
-
)
|
15 |
-
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
16 |
-
self.relu_s1 = nn.ReLU(inplace=True)
|
17 |
-
|
18 |
-
def forward(self, x):
|
19 |
-
|
20 |
-
hx = x
|
21 |
-
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
22 |
-
|
23 |
-
return xout
|
24 |
-
|
25 |
-
|
26 |
-
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
27 |
-
def _upsample_like(src, tar):
|
28 |
-
|
29 |
-
src = F.interpolate(src, size=tar.shape[2:], mode="bilinear")
|
30 |
-
|
31 |
-
return src
|
32 |
-
|
33 |
-
|
34 |
-
### RSU-7 ###
|
35 |
-
class RSU7(nn.Module):
|
36 |
-
|
37 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
38 |
-
super(RSU7, self).__init__()
|
39 |
-
|
40 |
-
self.in_ch = in_ch
|
41 |
-
self.mid_ch = mid_ch
|
42 |
-
self.out_ch = out_ch
|
43 |
-
|
44 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) ## 1 -> 1/2
|
45 |
-
|
46 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
47 |
-
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
48 |
-
|
49 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
50 |
-
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
51 |
-
|
52 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
53 |
-
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
54 |
-
|
55 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
56 |
-
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
57 |
-
|
58 |
-
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
59 |
-
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
60 |
-
|
61 |
-
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
62 |
-
|
63 |
-
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
64 |
-
|
65 |
-
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
66 |
-
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
67 |
-
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
68 |
-
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
69 |
-
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
70 |
-
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
71 |
-
|
72 |
-
def forward(self, x):
|
73 |
-
b, c, h, w = x.shape
|
74 |
-
|
75 |
-
hx = x
|
76 |
-
hxin = self.rebnconvin(hx)
|
77 |
-
|
78 |
-
hx1 = self.rebnconv1(hxin)
|
79 |
-
hx = self.pool1(hx1)
|
80 |
-
|
81 |
-
hx2 = self.rebnconv2(hx)
|
82 |
-
hx = self.pool2(hx2)
|
83 |
-
|
84 |
-
hx3 = self.rebnconv3(hx)
|
85 |
-
hx = self.pool3(hx3)
|
86 |
-
|
87 |
-
hx4 = self.rebnconv4(hx)
|
88 |
-
hx = self.pool4(hx4)
|
89 |
-
|
90 |
-
hx5 = self.rebnconv5(hx)
|
91 |
-
hx = self.pool5(hx5)
|
92 |
-
|
93 |
-
hx6 = self.rebnconv6(hx)
|
94 |
-
|
95 |
-
hx7 = self.rebnconv7(hx6)
|
96 |
-
|
97 |
-
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1))
|
98 |
-
hx6dup = _upsample_like(hx6d, hx5)
|
99 |
-
|
100 |
-
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1))
|
101 |
-
hx5dup = _upsample_like(hx5d, hx4)
|
102 |
-
|
103 |
-
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
104 |
-
hx4dup = _upsample_like(hx4d, hx3)
|
105 |
-
|
106 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
107 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
108 |
-
|
109 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
110 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
111 |
-
|
112 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
113 |
-
|
114 |
-
return hx1d + hxin
|
115 |
-
|
116 |
-
|
117 |
-
### RSU-6 ###
|
118 |
-
class RSU6(nn.Module):
|
119 |
-
|
120 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
121 |
-
super(RSU6, self).__init__()
|
122 |
-
|
123 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
124 |
-
|
125 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
126 |
-
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
127 |
-
|
128 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
129 |
-
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
130 |
-
|
131 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
132 |
-
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
133 |
-
|
134 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
135 |
-
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
136 |
-
|
137 |
-
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
138 |
-
|
139 |
-
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
140 |
-
|
141 |
-
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
142 |
-
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
143 |
-
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
144 |
-
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
145 |
-
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
146 |
-
|
147 |
-
def forward(self, x):
|
148 |
-
|
149 |
-
hx = x
|
150 |
-
|
151 |
-
hxin = self.rebnconvin(hx)
|
152 |
-
|
153 |
-
hx1 = self.rebnconv1(hxin)
|
154 |
-
hx = self.pool1(hx1)
|
155 |
-
|
156 |
-
hx2 = self.rebnconv2(hx)
|
157 |
-
hx = self.pool2(hx2)
|
158 |
-
|
159 |
-
hx3 = self.rebnconv3(hx)
|
160 |
-
hx = self.pool3(hx3)
|
161 |
-
|
162 |
-
hx4 = self.rebnconv4(hx)
|
163 |
-
hx = self.pool4(hx4)
|
164 |
-
|
165 |
-
hx5 = self.rebnconv5(hx)
|
166 |
-
|
167 |
-
hx6 = self.rebnconv6(hx5)
|
168 |
-
|
169 |
-
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1))
|
170 |
-
hx5dup = _upsample_like(hx5d, hx4)
|
171 |
-
|
172 |
-
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
173 |
-
hx4dup = _upsample_like(hx4d, hx3)
|
174 |
-
|
175 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
176 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
177 |
-
|
178 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
179 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
180 |
-
|
181 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
182 |
-
|
183 |
-
return hx1d + hxin
|
184 |
-
|
185 |
-
|
186 |
-
### RSU-5 ###
|
187 |
-
class RSU5(nn.Module):
|
188 |
-
|
189 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
190 |
-
super(RSU5, self).__init__()
|
191 |
-
|
192 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
193 |
-
|
194 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
195 |
-
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
196 |
-
|
197 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
198 |
-
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
199 |
-
|
200 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
201 |
-
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
202 |
-
|
203 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
204 |
-
|
205 |
-
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
206 |
-
|
207 |
-
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
208 |
-
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
209 |
-
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
210 |
-
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
211 |
-
|
212 |
-
def forward(self, x):
|
213 |
-
|
214 |
-
hx = x
|
215 |
-
|
216 |
-
hxin = self.rebnconvin(hx)
|
217 |
-
|
218 |
-
hx1 = self.rebnconv1(hxin)
|
219 |
-
hx = self.pool1(hx1)
|
220 |
-
|
221 |
-
hx2 = self.rebnconv2(hx)
|
222 |
-
hx = self.pool2(hx2)
|
223 |
-
|
224 |
-
hx3 = self.rebnconv3(hx)
|
225 |
-
hx = self.pool3(hx3)
|
226 |
-
|
227 |
-
hx4 = self.rebnconv4(hx)
|
228 |
-
|
229 |
-
hx5 = self.rebnconv5(hx4)
|
230 |
-
|
231 |
-
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1))
|
232 |
-
hx4dup = _upsample_like(hx4d, hx3)
|
233 |
-
|
234 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
235 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
236 |
-
|
237 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
238 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
239 |
-
|
240 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
241 |
-
|
242 |
-
return hx1d + hxin
|
243 |
-
|
244 |
-
|
245 |
-
### RSU-4 ###
|
246 |
-
class RSU4(nn.Module):
|
247 |
-
|
248 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
249 |
-
super(RSU4, self).__init__()
|
250 |
-
|
251 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
252 |
-
|
253 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
254 |
-
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
255 |
-
|
256 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
257 |
-
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
258 |
-
|
259 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
260 |
-
|
261 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
262 |
-
|
263 |
-
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
264 |
-
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
265 |
-
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
266 |
-
|
267 |
-
def forward(self, x):
|
268 |
-
|
269 |
-
hx = x
|
270 |
-
|
271 |
-
hxin = self.rebnconvin(hx)
|
272 |
-
|
273 |
-
hx1 = self.rebnconv1(hxin)
|
274 |
-
hx = self.pool1(hx1)
|
275 |
-
|
276 |
-
hx2 = self.rebnconv2(hx)
|
277 |
-
hx = self.pool2(hx2)
|
278 |
-
|
279 |
-
hx3 = self.rebnconv3(hx)
|
280 |
-
|
281 |
-
hx4 = self.rebnconv4(hx3)
|
282 |
-
|
283 |
-
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
284 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
285 |
-
|
286 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
287 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
288 |
-
|
289 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
290 |
-
|
291 |
-
return hx1d + hxin
|
292 |
-
|
293 |
-
|
294 |
-
### RSU-4F ###
|
295 |
-
class RSU4F(nn.Module):
|
296 |
-
|
297 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
298 |
-
super(RSU4F, self).__init__()
|
299 |
-
|
300 |
-
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
301 |
-
|
302 |
-
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
303 |
-
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
304 |
-
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
|
305 |
-
|
306 |
-
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
|
307 |
-
|
308 |
-
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4)
|
309 |
-
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2)
|
310 |
-
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
311 |
-
|
312 |
-
def forward(self, x):
|
313 |
-
|
314 |
-
hx = x
|
315 |
-
|
316 |
-
hxin = self.rebnconvin(hx)
|
317 |
-
|
318 |
-
hx1 = self.rebnconv1(hxin)
|
319 |
-
hx2 = self.rebnconv2(hx1)
|
320 |
-
hx3 = self.rebnconv3(hx2)
|
321 |
-
|
322 |
-
hx4 = self.rebnconv4(hx3)
|
323 |
-
|
324 |
-
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
325 |
-
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1))
|
326 |
-
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1))
|
327 |
-
|
328 |
-
return hx1d + hxin
|
329 |
-
|
330 |
-
|
331 |
-
class myrebnconv(nn.Module):
|
332 |
-
def __init__(
|
333 |
-
self,
|
334 |
-
in_ch=3,
|
335 |
-
out_ch=1,
|
336 |
-
kernel_size=3,
|
337 |
-
stride=1,
|
338 |
-
padding=1,
|
339 |
-
dilation=1,
|
340 |
-
groups=1,
|
341 |
-
):
|
342 |
-
super(myrebnconv, self).__init__()
|
343 |
-
|
344 |
-
self.conv = nn.Conv2d(
|
345 |
-
in_ch,
|
346 |
-
out_ch,
|
347 |
-
kernel_size=kernel_size,
|
348 |
-
stride=stride,
|
349 |
-
padding=padding,
|
350 |
-
dilation=dilation,
|
351 |
-
groups=groups,
|
352 |
-
)
|
353 |
-
self.bn = nn.BatchNorm2d(out_ch)
|
354 |
-
self.rl = nn.ReLU(inplace=True)
|
355 |
-
|
356 |
-
def forward(self, x):
|
357 |
-
return self.rl(self.bn(self.conv(x)))
|
358 |
-
|
359 |
-
|
360 |
-
bce_loss = nn.BCELoss(size_average=True)
|
361 |
-
|
362 |
-
|
363 |
-
class ORMBG(nn.Module):
|
364 |
-
|
365 |
-
def __init__(self, in_ch=3, out_ch=1):
|
366 |
-
super(ORMBG, self).__init__()
|
367 |
-
|
368 |
-
self.conv_in = nn.Conv2d(in_ch, 64, 3, stride=2, padding=1)
|
369 |
-
self.pool_in = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
370 |
-
|
371 |
-
self.stage1 = RSU7(64, 32, 64)
|
372 |
-
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
373 |
-
|
374 |
-
self.stage2 = RSU6(64, 32, 128)
|
375 |
-
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
376 |
-
|
377 |
-
self.stage3 = RSU5(128, 64, 256)
|
378 |
-
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
379 |
-
|
380 |
-
self.stage4 = RSU4(256, 128, 512)
|
381 |
-
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
382 |
-
|
383 |
-
self.stage5 = RSU4F(512, 256, 512)
|
384 |
-
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
385 |
-
|
386 |
-
self.stage6 = RSU4F(512, 256, 512)
|
387 |
-
|
388 |
-
# decoder
|
389 |
-
self.stage5d = RSU4F(1024, 256, 512)
|
390 |
-
self.stage4d = RSU4(1024, 128, 256)
|
391 |
-
self.stage3d = RSU5(512, 64, 128)
|
392 |
-
self.stage2d = RSU6(256, 32, 64)
|
393 |
-
self.stage1d = RSU7(128, 16, 64)
|
394 |
-
|
395 |
-
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
396 |
-
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
397 |
-
self.side3 = nn.Conv2d(128, out_ch, 3, padding=1)
|
398 |
-
self.side4 = nn.Conv2d(256, out_ch, 3, padding=1)
|
399 |
-
self.side5 = nn.Conv2d(512, out_ch, 3, padding=1)
|
400 |
-
self.side6 = nn.Conv2d(512, out_ch, 3, padding=1)
|
401 |
-
|
402 |
-
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
403 |
-
|
404 |
-
def compute_loss(self, predictions, ground_truth):
|
405 |
-
loss0, loss = 0.0, 0.0
|
406 |
-
for i in range(0, len(predictions)):
|
407 |
-
loss = loss + bce_loss(predictions[i], ground_truth)
|
408 |
-
if i == 0:
|
409 |
-
loss0 = loss
|
410 |
-
return loss0, loss
|
411 |
-
|
412 |
-
def forward(self, x):
|
413 |
-
|
414 |
-
hx = x
|
415 |
-
|
416 |
-
hxin = self.conv_in(hx)
|
417 |
-
# hx = self.pool_in(hxin)
|
418 |
-
|
419 |
-
# stage 1
|
420 |
-
hx1 = self.stage1(hxin)
|
421 |
-
hx = self.pool12(hx1)
|
422 |
-
|
423 |
-
# stage 2
|
424 |
-
hx2 = self.stage2(hx)
|
425 |
-
hx = self.pool23(hx2)
|
426 |
-
|
427 |
-
# stage 3
|
428 |
-
hx3 = self.stage3(hx)
|
429 |
-
hx = self.pool34(hx3)
|
430 |
-
|
431 |
-
# stage 4
|
432 |
-
hx4 = self.stage4(hx)
|
433 |
-
hx = self.pool45(hx4)
|
434 |
-
|
435 |
-
# stage 5
|
436 |
-
hx5 = self.stage5(hx)
|
437 |
-
hx = self.pool56(hx5)
|
438 |
-
|
439 |
-
# stage 6
|
440 |
-
hx6 = self.stage6(hx)
|
441 |
-
hx6up = _upsample_like(hx6, hx5)
|
442 |
-
|
443 |
-
# -------------------- decoder --------------------
|
444 |
-
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
445 |
-
hx5dup = _upsample_like(hx5d, hx4)
|
446 |
-
|
447 |
-
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
448 |
-
hx4dup = _upsample_like(hx4d, hx3)
|
449 |
-
|
450 |
-
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
451 |
-
hx3dup = _upsample_like(hx3d, hx2)
|
452 |
-
|
453 |
-
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
454 |
-
hx2dup = _upsample_like(hx2d, hx1)
|
455 |
-
|
456 |
-
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
457 |
-
|
458 |
-
# side output
|
459 |
-
d1 = self.side1(hx1d)
|
460 |
-
d1 = _upsample_like(d1, x)
|
461 |
-
|
462 |
-
d2 = self.side2(hx2d)
|
463 |
-
d2 = _upsample_like(d2, x)
|
464 |
-
|
465 |
-
d3 = self.side3(hx3d)
|
466 |
-
d3 = _upsample_like(d3, x)
|
467 |
-
|
468 |
-
d4 = self.side4(hx4d)
|
469 |
-
d4 = _upsample_like(d4, x)
|
470 |
-
|
471 |
-
d5 = self.side5(hx5d)
|
472 |
-
d5 = _upsample_like(d5, x)
|
473 |
-
|
474 |
-
d6 = self.side6(hx6)
|
475 |
-
d6 = _upsample_like(d6, x)
|
476 |
-
|
477 |
-
return [
|
478 |
-
F.sigmoid(d1),
|
479 |
-
F.sigmoid(d2),
|
480 |
-
F.sigmoid(d3),
|
481 |
-
F.sigmoid(d4),
|
482 |
-
F.sigmoid(d5),
|
483 |
-
F.sigmoid(d6),
|
484 |
-
], [hx1d, hx2d, hx3d, hx4d, hx5d, hx6]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ormbg/train_model.py
DELETED
@@ -1,474 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
-
|
4 |
-
import torch, gc
|
5 |
-
import torch.nn as nn
|
6 |
-
import torch.optim as optim
|
7 |
-
from torch.autograd import Variable
|
8 |
-
import torch.nn.functional as F
|
9 |
-
|
10 |
-
import numpy as np
|
11 |
-
|
12 |
-
from pathlib import Path
|
13 |
-
|
14 |
-
from models.ormbg import ORMBG
|
15 |
-
|
16 |
-
from skimage import io
|
17 |
-
|
18 |
-
from basics import f1_mae_torch
|
19 |
-
|
20 |
-
from data_loader_cache import (
|
21 |
-
get_im_gt_name_dict,
|
22 |
-
create_dataloaders,
|
23 |
-
GOSGridDropout,
|
24 |
-
GOSRandomHFlip,
|
25 |
-
)
|
26 |
-
|
27 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
-
|
29 |
-
|
30 |
-
def valid(net, valid_dataloaders, valid_datasets, hypar, epoch=0):
|
31 |
-
net.eval()
|
32 |
-
print("Validating...")
|
33 |
-
epoch_num = hypar["max_epoch_num"]
|
34 |
-
|
35 |
-
val_loss = 0.0
|
36 |
-
tar_loss = 0.0
|
37 |
-
val_cnt = 0.0
|
38 |
-
|
39 |
-
tmp_f1 = []
|
40 |
-
tmp_mae = []
|
41 |
-
tmp_time = []
|
42 |
-
|
43 |
-
start_valid = time.time()
|
44 |
-
|
45 |
-
for k in range(len(valid_dataloaders)):
|
46 |
-
|
47 |
-
valid_dataloader = valid_dataloaders[k]
|
48 |
-
valid_dataset = valid_datasets[k]
|
49 |
-
|
50 |
-
val_num = valid_dataset.__len__()
|
51 |
-
mybins = np.arange(0, 256)
|
52 |
-
PRE = np.zeros((val_num, len(mybins) - 1))
|
53 |
-
REC = np.zeros((val_num, len(mybins) - 1))
|
54 |
-
F1 = np.zeros((val_num, len(mybins) - 1))
|
55 |
-
MAE = np.zeros((val_num))
|
56 |
-
|
57 |
-
for i_val, data_val in enumerate(valid_dataloader):
|
58 |
-
val_cnt = val_cnt + 1.0
|
59 |
-
imidx_val, inputs_val, labels_val, shapes_val = (
|
60 |
-
data_val["imidx"],
|
61 |
-
data_val["image"],
|
62 |
-
data_val["label"],
|
63 |
-
data_val["shape"],
|
64 |
-
)
|
65 |
-
|
66 |
-
if hypar["model_digit"] == "full":
|
67 |
-
inputs_val = inputs_val.type(torch.FloatTensor)
|
68 |
-
labels_val = labels_val.type(torch.FloatTensor)
|
69 |
-
else:
|
70 |
-
inputs_val = inputs_val.type(torch.HalfTensor)
|
71 |
-
labels_val = labels_val.type(torch.HalfTensor)
|
72 |
-
|
73 |
-
# wrap them in Variable
|
74 |
-
if torch.cuda.is_available():
|
75 |
-
inputs_val_v, labels_val_v = Variable(
|
76 |
-
inputs_val.cuda(), requires_grad=False
|
77 |
-
), Variable(labels_val.cuda(), requires_grad=False)
|
78 |
-
else:
|
79 |
-
inputs_val_v, labels_val_v = Variable(
|
80 |
-
inputs_val, requires_grad=False
|
81 |
-
), Variable(labels_val, requires_grad=False)
|
82 |
-
|
83 |
-
t_start = time.time()
|
84 |
-
ds_val = net(inputs_val_v)[0]
|
85 |
-
t_end = time.time() - t_start
|
86 |
-
tmp_time.append(t_end)
|
87 |
-
|
88 |
-
# loss2_val, loss_val = muti_loss_fusion(ds_val, labels_val_v)
|
89 |
-
loss2_val, loss_val = net.compute_loss(ds_val, labels_val_v)
|
90 |
-
|
91 |
-
# compute F measure
|
92 |
-
for t in range(hypar["batch_size_valid"]):
|
93 |
-
i_test = imidx_val[t].data.numpy()
|
94 |
-
|
95 |
-
pred_val = ds_val[0][t, :, :, :] # B x 1 x H x W
|
96 |
-
|
97 |
-
## recover the prediction spatial size to the orignal image size
|
98 |
-
pred_val = torch.squeeze(
|
99 |
-
F.upsample(
|
100 |
-
torch.unsqueeze(pred_val, 0),
|
101 |
-
(shapes_val[t][0], shapes_val[t][1]),
|
102 |
-
mode="bilinear",
|
103 |
-
)
|
104 |
-
)
|
105 |
-
|
106 |
-
# pred_val = normPRED(pred_val)
|
107 |
-
ma = torch.max(pred_val)
|
108 |
-
mi = torch.min(pred_val)
|
109 |
-
pred_val = (pred_val - mi) / (ma - mi) # max = 1
|
110 |
-
|
111 |
-
if len(valid_dataset.dataset["ori_gt_path"]) != 0:
|
112 |
-
gt = np.squeeze(
|
113 |
-
io.imread(valid_dataset.dataset["ori_gt_path"][i_test])
|
114 |
-
) # max = 255
|
115 |
-
if gt.max() == 1:
|
116 |
-
gt = gt * 255
|
117 |
-
else:
|
118 |
-
gt = np.zeros((shapes_val[t][0], shapes_val[t][1]))
|
119 |
-
with torch.no_grad():
|
120 |
-
gt = torch.tensor(gt).to(device)
|
121 |
-
|
122 |
-
pre, rec, f1, mae = f1_mae_torch(
|
123 |
-
pred_val * 255, gt, valid_dataset, i_test, mybins, hypar
|
124 |
-
)
|
125 |
-
|
126 |
-
PRE[i_test, :] = pre
|
127 |
-
REC[i_test, :] = rec
|
128 |
-
F1[i_test, :] = f1
|
129 |
-
MAE[i_test] = mae
|
130 |
-
|
131 |
-
del ds_val, gt
|
132 |
-
gc.collect()
|
133 |
-
torch.cuda.empty_cache()
|
134 |
-
|
135 |
-
# if(loss_val.data[0]>1):
|
136 |
-
val_loss += loss_val.item() # data[0]
|
137 |
-
tar_loss += loss2_val.item() # data[0]
|
138 |
-
|
139 |
-
print(
|
140 |
-
"[validating: %5d/%5d] val_ls:%f, tar_ls: %f, f1: %f, mae: %f, time: %f"
|
141 |
-
% (
|
142 |
-
i_val,
|
143 |
-
val_num,
|
144 |
-
val_loss / (i_val + 1),
|
145 |
-
tar_loss / (i_val + 1),
|
146 |
-
np.amax(F1[i_test, :]),
|
147 |
-
MAE[i_test],
|
148 |
-
t_end,
|
149 |
-
)
|
150 |
-
)
|
151 |
-
|
152 |
-
del loss2_val, loss_val
|
153 |
-
|
154 |
-
print("============================")
|
155 |
-
PRE_m = np.mean(PRE, 0)
|
156 |
-
REC_m = np.mean(REC, 0)
|
157 |
-
f1_m = (1 + 0.3) * PRE_m * REC_m / (0.3 * PRE_m + REC_m + 1e-8)
|
158 |
-
|
159 |
-
tmp_f1.append(np.amax(f1_m))
|
160 |
-
tmp_mae.append(np.mean(MAE))
|
161 |
-
|
162 |
-
return tmp_f1, tmp_mae, val_loss, tar_loss, i_val, tmp_time
|
163 |
-
|
164 |
-
|
165 |
-
def train(
|
166 |
-
net,
|
167 |
-
optimizer,
|
168 |
-
train_dataloaders,
|
169 |
-
train_datasets,
|
170 |
-
valid_dataloaders,
|
171 |
-
valid_datasets,
|
172 |
-
hypar,
|
173 |
-
):
|
174 |
-
|
175 |
-
model_path = hypar["model_path"]
|
176 |
-
model_save_fre = hypar["model_save_fre"]
|
177 |
-
max_ite = hypar["max_ite"]
|
178 |
-
batch_size_train = hypar["batch_size_train"]
|
179 |
-
batch_size_valid = hypar["batch_size_valid"]
|
180 |
-
|
181 |
-
if not os.path.exists(model_path):
|
182 |
-
os.mkdir(model_path)
|
183 |
-
|
184 |
-
ite_num = hypar["start_ite"] # count the toal iteration number
|
185 |
-
ite_num4val = 0 #
|
186 |
-
running_loss = 0.0 # count the toal loss
|
187 |
-
running_tar_loss = 0.0 # count the target output loss
|
188 |
-
last_f1 = [0 for x in range(len(valid_dataloaders))]
|
189 |
-
|
190 |
-
train_num = train_datasets[0].__len__()
|
191 |
-
|
192 |
-
net.train()
|
193 |
-
|
194 |
-
start_last = time.time()
|
195 |
-
gos_dataloader = train_dataloaders[0]
|
196 |
-
epoch_num = hypar["max_epoch_num"]
|
197 |
-
notgood_cnt = 0
|
198 |
-
|
199 |
-
for epoch in range(epoch_num):
|
200 |
-
|
201 |
-
for i, data in enumerate(gos_dataloader):
|
202 |
-
|
203 |
-
if ite_num >= max_ite:
|
204 |
-
print("Training Reached the Maximal Iteration Number ", max_ite)
|
205 |
-
exit()
|
206 |
-
|
207 |
-
# start_read = time.time()
|
208 |
-
ite_num = ite_num + 1
|
209 |
-
ite_num4val = ite_num4val + 1
|
210 |
-
|
211 |
-
# get the inputs
|
212 |
-
inputs, labels = data["image"], data["label"]
|
213 |
-
|
214 |
-
if hypar["model_digit"] == "full":
|
215 |
-
inputs = inputs.type(torch.FloatTensor)
|
216 |
-
labels = labels.type(torch.FloatTensor)
|
217 |
-
else:
|
218 |
-
inputs = inputs.type(torch.HalfTensor)
|
219 |
-
labels = labels.type(torch.HalfTensor)
|
220 |
-
|
221 |
-
# wrap them in Variable
|
222 |
-
if torch.cuda.is_available():
|
223 |
-
inputs_v, labels_v = Variable(
|
224 |
-
inputs.cuda(), requires_grad=False
|
225 |
-
), Variable(labels.cuda(), requires_grad=False)
|
226 |
-
else:
|
227 |
-
inputs_v, labels_v = Variable(inputs, requires_grad=False), Variable(
|
228 |
-
labels, requires_grad=False
|
229 |
-
)
|
230 |
-
|
231 |
-
# y zero the parameter gradients
|
232 |
-
start_inf_loss_back = time.time()
|
233 |
-
optimizer.zero_grad()
|
234 |
-
|
235 |
-
ds, _ = net(inputs_v)
|
236 |
-
loss2, loss = net.compute_loss(ds, labels_v)
|
237 |
-
|
238 |
-
loss.backward()
|
239 |
-
optimizer.step()
|
240 |
-
|
241 |
-
# # print statistics
|
242 |
-
running_loss += loss.item()
|
243 |
-
running_tar_loss += loss2.item()
|
244 |
-
|
245 |
-
# del outputs, loss
|
246 |
-
del ds, loss2, loss
|
247 |
-
end_inf_loss_back = time.time() - start_inf_loss_back
|
248 |
-
|
249 |
-
print(
|
250 |
-
">>>"
|
251 |
-
+ model_path.split("/")[-1]
|
252 |
-
+ " - [epoch: %3d/%3d, batch: %5d/%5d, ite: %d] train loss: %3f, tar: %3f, time-per-iter: %3f s, time_read: %3f"
|
253 |
-
% (
|
254 |
-
epoch + 1,
|
255 |
-
epoch_num,
|
256 |
-
(i + 1) * batch_size_train,
|
257 |
-
train_num,
|
258 |
-
ite_num,
|
259 |
-
running_loss / ite_num4val,
|
260 |
-
running_tar_loss / ite_num4val,
|
261 |
-
time.time() - start_last,
|
262 |
-
time.time() - start_last - end_inf_loss_back,
|
263 |
-
)
|
264 |
-
)
|
265 |
-
start_last = time.time()
|
266 |
-
|
267 |
-
if ite_num % model_save_fre == 0: # validate every 2000 iterations
|
268 |
-
notgood_cnt += 1
|
269 |
-
net.eval()
|
270 |
-
tmp_f1, tmp_mae, val_loss, tar_loss, i_val, tmp_time = valid(
|
271 |
-
net, valid_dataloaders, valid_datasets, hypar, epoch
|
272 |
-
)
|
273 |
-
net.train() # resume train
|
274 |
-
|
275 |
-
tmp_out = 0
|
276 |
-
print("last_f1:", last_f1)
|
277 |
-
print("tmp_f1:", tmp_f1)
|
278 |
-
for fi in range(len(last_f1)):
|
279 |
-
if tmp_f1[fi] > last_f1[fi]:
|
280 |
-
tmp_out = 1
|
281 |
-
print("tmp_out:", tmp_out)
|
282 |
-
if tmp_out:
|
283 |
-
notgood_cnt = 0
|
284 |
-
last_f1 = tmp_f1
|
285 |
-
tmp_f1_str = [str(round(f1x, 4)) for f1x in tmp_f1]
|
286 |
-
tmp_mae_str = [str(round(mx, 4)) for mx in tmp_mae]
|
287 |
-
maxf1 = "_".join(tmp_f1_str)
|
288 |
-
meanM = "_".join(tmp_mae_str)
|
289 |
-
# .cpu().detach().numpy()
|
290 |
-
model_name = (
|
291 |
-
"/gpu_itr_"
|
292 |
-
+ str(ite_num)
|
293 |
-
+ "_traLoss_"
|
294 |
-
+ str(np.round(running_loss / ite_num4val, 4))
|
295 |
-
+ "_traTarLoss_"
|
296 |
-
+ str(np.round(running_tar_loss / ite_num4val, 4))
|
297 |
-
+ "_valLoss_"
|
298 |
-
+ str(np.round(val_loss / (i_val + 1), 4))
|
299 |
-
+ "_valTarLoss_"
|
300 |
-
+ str(np.round(tar_loss / (i_val + 1), 4))
|
301 |
-
+ "_maxF1_"
|
302 |
-
+ maxf1
|
303 |
-
+ "_mae_"
|
304 |
-
+ meanM
|
305 |
-
+ "_time_"
|
306 |
-
+ str(
|
307 |
-
np.round(np.mean(np.array(tmp_time)) / batch_size_valid, 6)
|
308 |
-
)
|
309 |
-
+ ".pth"
|
310 |
-
)
|
311 |
-
torch.save(net.state_dict(), model_path + model_name)
|
312 |
-
|
313 |
-
running_loss = 0.0
|
314 |
-
running_tar_loss = 0.0
|
315 |
-
ite_num4val = 0
|
316 |
-
|
317 |
-
if notgood_cnt >= hypar["early_stop"]:
|
318 |
-
print(
|
319 |
-
"No improvements in the last "
|
320 |
-
+ str(notgood_cnt)
|
321 |
-
+ " validation periods, so training stopped !"
|
322 |
-
)
|
323 |
-
exit()
|
324 |
-
|
325 |
-
print("Training Reaches The Maximum Epoch Number")
|
326 |
-
|
327 |
-
|
328 |
-
def main(train_datasets, valid_datasets, hypar):
|
329 |
-
|
330 |
-
print("--- create training dataloader ---")
|
331 |
-
|
332 |
-
train_nm_im_gt_list = get_im_gt_name_dict(train_datasets, flag="train")
|
333 |
-
## build dataloader for training datasets
|
334 |
-
train_dataloaders, train_datasets = create_dataloaders(
|
335 |
-
train_nm_im_gt_list,
|
336 |
-
cache_size=hypar["cache_size"],
|
337 |
-
cache_boost=hypar["cache_boost_train"],
|
338 |
-
my_transforms=[GOSGridDropout(), GOSRandomHFlip()],
|
339 |
-
batch_size=hypar["batch_size_train"],
|
340 |
-
shuffle=True,
|
341 |
-
)
|
342 |
-
|
343 |
-
valid_nm_im_gt_list = get_im_gt_name_dict(valid_datasets, flag="valid")
|
344 |
-
|
345 |
-
valid_dataloaders, valid_datasets = create_dataloaders(
|
346 |
-
valid_nm_im_gt_list,
|
347 |
-
cache_size=hypar["cache_size"],
|
348 |
-
cache_boost=hypar["cache_boost_valid"],
|
349 |
-
my_transforms=[],
|
350 |
-
batch_size=hypar["batch_size_valid"],
|
351 |
-
shuffle=False,
|
352 |
-
)
|
353 |
-
|
354 |
-
net = hypar["model"]
|
355 |
-
|
356 |
-
if hypar["model_digit"] == "half":
|
357 |
-
net.half()
|
358 |
-
for layer in net.modules():
|
359 |
-
if isinstance(layer, nn.BatchNorm2d):
|
360 |
-
layer.float()
|
361 |
-
|
362 |
-
if torch.cuda.is_available():
|
363 |
-
net.cuda()
|
364 |
-
|
365 |
-
if hypar["restore_model"] != "":
|
366 |
-
print("restore model from:")
|
367 |
-
print(hypar["model_path"] + "/" + hypar["restore_model"])
|
368 |
-
if torch.cuda.is_available():
|
369 |
-
net.load_state_dict(
|
370 |
-
torch.load(hypar["model_path"] + "/" + hypar["restore_model"])
|
371 |
-
)
|
372 |
-
else:
|
373 |
-
net.load_state_dict(
|
374 |
-
torch.load(
|
375 |
-
hypar["model_path"] + "/" + hypar["restore_model"],
|
376 |
-
map_location="cpu",
|
377 |
-
)
|
378 |
-
)
|
379 |
-
|
380 |
-
optimizer = optim.Adam(
|
381 |
-
net.parameters(), lr=1e-3, betas=(0.9, 0.999), eps=1e-08, weight_decay=0
|
382 |
-
)
|
383 |
-
|
384 |
-
train(
|
385 |
-
net,
|
386 |
-
optimizer,
|
387 |
-
train_dataloaders,
|
388 |
-
train_datasets,
|
389 |
-
valid_dataloaders,
|
390 |
-
valid_datasets,
|
391 |
-
hypar,
|
392 |
-
)
|
393 |
-
|
394 |
-
|
395 |
-
if __name__ == "__main__":
|
396 |
-
|
397 |
-
output_model_folder = "saved_models"
|
398 |
-
Path(output_model_folder).mkdir(parents=True, exist_ok=True)
|
399 |
-
|
400 |
-
train_datasets, valid_datasets = [], []
|
401 |
-
dataset_1, dataset_1 = {}, {}
|
402 |
-
|
403 |
-
dataset_training = {
|
404 |
-
"name": "ormbg-training",
|
405 |
-
"im_dir": str(Path("dataset", "training", "im")),
|
406 |
-
"gt_dir": str(Path("dataset", "training", "gt")),
|
407 |
-
"im_ext": ".png",
|
408 |
-
"gt_ext": ".png",
|
409 |
-
"cache_dir": str(Path("cache", "teacher", "training")),
|
410 |
-
}
|
411 |
-
|
412 |
-
dataset_validation = {
|
413 |
-
"name": "ormbg-training",
|
414 |
-
"im_dir": str(Path("dataset", "validation", "im")),
|
415 |
-
"gt_dir": str(Path("dataset", "validation", "gt")),
|
416 |
-
"im_ext": ".png",
|
417 |
-
"gt_ext": ".png",
|
418 |
-
"cache_dir": str(Path("cache", "teacher", "validation")),
|
419 |
-
}
|
420 |
-
|
421 |
-
train_datasets = [dataset_training]
|
422 |
-
valid_datasets = [dataset_validation]
|
423 |
-
|
424 |
-
### --------------- STEP 2: Configuring the hyperparamters for Training, validation and inferencing ---------------
|
425 |
-
hypar = {}
|
426 |
-
|
427 |
-
hypar["model"] = ORMBG()
|
428 |
-
hypar["seed"] = 0
|
429 |
-
|
430 |
-
## model weights path
|
431 |
-
hypar["model_path"] = "saved_models"
|
432 |
-
|
433 |
-
## name of the segmentation model weights .pth for resume training process from last stop or for the inferencing
|
434 |
-
hypar["restore_model"] = ""
|
435 |
-
|
436 |
-
## start iteration for the training, can be changed to match the restored training process
|
437 |
-
hypar["start_ite"] = 0
|
438 |
-
|
439 |
-
## indicates "half" or "full" accuracy of float number
|
440 |
-
hypar["model_digit"] = "full"
|
441 |
-
|
442 |
-
## To handle large size input images, which take a lot of time for loading in training,
|
443 |
-
# we introduce the cache mechanism for pre-convering and resizing the jpg and png images into .pt file
|
444 |
-
hypar["cache_size"] = [
|
445 |
-
1024,
|
446 |
-
1024,
|
447 |
-
]
|
448 |
-
|
449 |
-
## cached input spatial resolution, can be configured into different size
|
450 |
-
## "True" or "False", indicates wheather to load all the training datasets into RAM, True will greatly speed the training process while requires more RAM
|
451 |
-
hypar["cache_boost_train"] = False
|
452 |
-
|
453 |
-
## "True" or "False", indicates wheather to load all the validation datasets into RAM, True will greatly speed the training process while requires more RAM
|
454 |
-
hypar["cache_boost_valid"] = False
|
455 |
-
|
456 |
-
## stop the training when no improvement in the past 20 validation periods, smaller numbers can be used here e.g., 5 or 10.
|
457 |
-
hypar["early_stop"] = 20
|
458 |
-
|
459 |
-
## valid and save model weights every 2000 iterations
|
460 |
-
hypar["model_save_fre"] = 2000
|
461 |
-
|
462 |
-
## batch size for training
|
463 |
-
hypar["batch_size_train"] = 8
|
464 |
-
|
465 |
-
## batch size for validation and inferencing
|
466 |
-
hypar["batch_size_valid"] = 1
|
467 |
-
|
468 |
-
## if early stop couldn't stop the training process, stop it by the max_ite_num
|
469 |
-
hypar["max_ite"] = 10000000
|
470 |
-
|
471 |
-
## if early stop and max_ite couldn't stop the training process, stop it by the max_epoch_num
|
472 |
-
hypar["max_epoch_num"] = 1000000
|
473 |
-
|
474 |
-
main(train_datasets, valid_datasets, hypar=hypar)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stack.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
from PIL import Image
|
2 |
-
|
3 |
-
|
4 |
-
def stack_images(image_paths, output_path):
|
5 |
-
# Load all images from the provided paths
|
6 |
-
images = [Image.open(path) for path in image_paths]
|
7 |
-
|
8 |
-
# Determine the size of individual images (assuming all are the same size)
|
9 |
-
width, height = images[0].size
|
10 |
-
|
11 |
-
# Create a new image with appropriate size (2 columns and 3 rows)
|
12 |
-
total_width = width * 2
|
13 |
-
total_height = height * 3
|
14 |
-
new_image = Image.new("RGB", (total_width, total_height))
|
15 |
-
|
16 |
-
# Paste each image into the new image
|
17 |
-
for i, image in enumerate(images):
|
18 |
-
# Calculate the position for each image
|
19 |
-
x_offset = (i % 2) * width
|
20 |
-
y_offset = (i // 2) * height
|
21 |
-
new_image.paste(image, (x_offset, y_offset))
|
22 |
-
|
23 |
-
# Save the new image
|
24 |
-
new_image.save(output_path)
|
25 |
-
|
26 |
-
|
27 |
-
# Example usage
|
28 |
-
image_paths = [
|
29 |
-
"/Users/mav/Desktop/example1.png",
|
30 |
-
"/Users/mav/Desktop/image-1.webp",
|
31 |
-
"/Users/mav/Desktop/example2.png",
|
32 |
-
"/Users/mav/Desktop/image-2.webp",
|
33 |
-
"/Users/mav/Desktop/example3.png",
|
34 |
-
"/Users/mav/Desktop/image-3.webp",
|
35 |
-
]
|
36 |
-
output_path = "stacked_images.jpg"
|
37 |
-
stack_images(image_paths, output_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
utils/architecture.py
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
from ormbg.models.ormbg import ORMBG
|
2 |
-
|
3 |
-
if __name__ == "__main__":
|
4 |
-
print(ORMBG())
|
|
|
|
|
|
|
|
|
|
utils/loss_example.py
DELETED
@@ -1,69 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import argparse
|
4 |
-
import numpy as np
|
5 |
-
from skimage import io
|
6 |
-
from ormbg.models.ormbg import ORMBG
|
7 |
-
import torch.nn.functional as F
|
8 |
-
|
9 |
-
|
10 |
-
def parse_args():
|
11 |
-
parser = argparse.ArgumentParser(
|
12 |
-
description="Remove background from images using ORMBG model."
|
13 |
-
)
|
14 |
-
parser.add_argument(
|
15 |
-
"--prediction",
|
16 |
-
type=list,
|
17 |
-
default=[
|
18 |
-
os.path.join("examples", "loss", "loss01.png"),
|
19 |
-
os.path.join("examples", "loss", "loss02.png"),
|
20 |
-
os.path.join("examples", "loss", "loss03.png"),
|
21 |
-
os.path.join("examples", "loss", "loss04.png"),
|
22 |
-
os.path.join("examples", "loss", "loss05.png"),
|
23 |
-
],
|
24 |
-
help="Path to the input image file.",
|
25 |
-
)
|
26 |
-
parser.add_argument(
|
27 |
-
"--gt",
|
28 |
-
type=str,
|
29 |
-
default=os.path.join("examples", "loss", "gt.png"),
|
30 |
-
help="Ground truth mask",
|
31 |
-
)
|
32 |
-
return parser.parse_args()
|
33 |
-
|
34 |
-
|
35 |
-
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor:
|
36 |
-
if len(im.shape) < 3:
|
37 |
-
im = im[:, :, np.newaxis]
|
38 |
-
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1)
|
39 |
-
im_tensor = F.interpolate(
|
40 |
-
torch.unsqueeze(im_tensor, 0), size=model_input_size, mode="bilinear"
|
41 |
-
).type(torch.uint8)
|
42 |
-
image = torch.divide(im_tensor, 255.0)
|
43 |
-
return image
|
44 |
-
|
45 |
-
|
46 |
-
def inference(args):
|
47 |
-
prediction_paths = args.prediction
|
48 |
-
gt_path = args.gt
|
49 |
-
|
50 |
-
net = ORMBG()
|
51 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
-
|
53 |
-
for pred_path in prediction_paths:
|
54 |
-
|
55 |
-
model_input_size = [1024, 1024]
|
56 |
-
loss = io.imread(pred_path)
|
57 |
-
prediction = preprocess_image(loss, model_input_size).to(device)
|
58 |
-
|
59 |
-
model_input_size = [1024, 1024]
|
60 |
-
gt = io.imread(gt_path)
|
61 |
-
ground_truth = preprocess_image(gt, model_input_size).to(device)
|
62 |
-
|
63 |
-
_, loss = net.compute_loss([prediction], ground_truth)
|
64 |
-
|
65 |
-
print(f"Loss: {pred_path} {loss}")
|
66 |
-
|
67 |
-
|
68 |
-
if __name__ == "__main__":
|
69 |
-
inference(parse_args())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/pth_to_onnx.py
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import argparse
|
3 |
-
from ormbg.models.ormbg import ORMBG
|
4 |
-
|
5 |
-
|
6 |
-
def export_to_onnx(model_path, onnx_path):
|
7 |
-
|
8 |
-
net = ORMBG()
|
9 |
-
|
10 |
-
if torch.cuda.is_available():
|
11 |
-
net.load_state_dict(torch.load(model_path))
|
12 |
-
net = net.cuda()
|
13 |
-
else:
|
14 |
-
net.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
|
15 |
-
|
16 |
-
net.eval()
|
17 |
-
|
18 |
-
# Create a dummy input tensor. The size should match the model's input size.
|
19 |
-
# Adjust the dimensions as necessary; here it is assumed the input is a 3-channel image.
|
20 |
-
dummy_input = torch.randn(
|
21 |
-
1,
|
22 |
-
3,
|
23 |
-
1024,
|
24 |
-
1024,
|
25 |
-
device="cuda" if torch.cuda.is_available() else "cpu",
|
26 |
-
)
|
27 |
-
|
28 |
-
torch.onnx.export(
|
29 |
-
net,
|
30 |
-
dummy_input,
|
31 |
-
onnx_path,
|
32 |
-
export_params=True,
|
33 |
-
opset_version=11,
|
34 |
-
do_constant_folding=True,
|
35 |
-
input_names=["input"],
|
36 |
-
output_names=["output"],
|
37 |
-
)
|
38 |
-
|
39 |
-
|
40 |
-
if __name__ == "__main__":
|
41 |
-
parser = argparse.ArgumentParser(
|
42 |
-
description="Export a trained model to ONNX format."
|
43 |
-
)
|
44 |
-
parser.add_argument(
|
45 |
-
"--model_path",
|
46 |
-
type=str,
|
47 |
-
default="models/ormbg.pth",
|
48 |
-
help="The path to the trained model file.",
|
49 |
-
)
|
50 |
-
parser.add_argument(
|
51 |
-
"--onnx_path",
|
52 |
-
type=str,
|
53 |
-
default="models/ormbg.pth",
|
54 |
-
help="The path where the ONNX model will be saved.",
|
55 |
-
)
|
56 |
-
|
57 |
-
args = parser.parse_args()
|
58 |
-
|
59 |
-
export_to_onnx(args.model_path, args.onnx_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|