|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import gradio as gr |
|
from ormbg import ORMBG |
|
from PIL import Image |
|
|
|
|
|
model_path = "ormbg.pth" |
|
|
|
net = ORMBG() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
net.to(device) |
|
|
|
|
|
def resize_image(image): |
|
image = image.convert("RGB") |
|
model_input_size = (1024, 1024) |
|
image = image.resize(model_input_size, Image.BILINEAR) |
|
return image |
|
|
|
|
|
def inference(image): |
|
|
|
|
|
orig_image = Image.fromarray(image) |
|
w, h = orig_image.size |
|
image = resize_image(orig_image) |
|
im_np = np.array(image) |
|
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) |
|
im_tensor = torch.unsqueeze(im_tensor, 0) |
|
im_tensor = torch.divide(im_tensor, 255.0) |
|
if torch.cuda.is_available(): |
|
im_tensor = im_tensor.cuda() |
|
|
|
|
|
result = net(im_tensor) |
|
|
|
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0) |
|
ma = torch.max(result) |
|
mi = torch.min(result) |
|
result = (result - mi) / (ma - mi) |
|
|
|
im_array = (result * 255).cpu().data.numpy().astype(np.uint8) |
|
pil_im = Image.fromarray(np.squeeze(im_array)) |
|
|
|
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) |
|
new_im.paste(orig_image, mask=pil_im) |
|
|
|
return new_im |
|
|
|
|
|
gr.Markdown("## Open Remove Background Model (ormbg)") |
|
gr.HTML( |
|
""" |
|
<p style="margin-bottom: 10px; font-size: 94%"> |
|
This is a demo for Open Remove Background Model (ormbg) that using |
|
<a href="https://huggingface.co/schirrmacher/ormbg" target="_blank">Open Remove Background Model (ormbg) model</a> as backbone. |
|
</p> |
|
""" |
|
) |
|
title = "Background Removal" |
|
description = r""" |
|
This model is a fully open-source background remover optimized for images with humans. |
|
|
|
It is based on <a href='https://github.com/xuebinqin/DIS' target='_blank'>Highly Accurate Dichotomous Image Segmentation research</a>. |
|
|
|
You can find more about the model <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>here</a>. |
|
""" |
|
examples = [ |
|
["./input.png"], |
|
] |
|
|
|
demo = gr.Interface( |
|
fn=inference, |
|
inputs="image", |
|
outputs="image", |
|
examples=examples, |
|
title=title, |
|
description=description, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=False) |
|
|