File size: 16,791 Bytes
92c1934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
## data loader
## Ackownledgement:
## We would like to thank Dr. Ibrahim Almakky (https://scholar.google.co.uk/citations?user=T9MTcK0AAAAJ&hl=en)
## for his helps in implementing cache machanism of our DIS dataloader.
from __future__ import print_function, division

import albumentations as A
import numpy as np
import random
from copy import deepcopy
import json
from tqdm import tqdm
from skimage import io
import os
from glob import glob

import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision.transforms.functional import normalize
import torch.nn.functional as F

#### --------------------- DIS dataloader cache ---------------------####


def get_im_gt_name_dict(datasets, flag="valid"):
    print("------------------------------", flag, "--------------------------------")
    name_im_gt_list = []
    for i in range(len(datasets)):
        print(
            "--->>>",
            flag,
            " dataset ",
            i,
            "/",
            len(datasets),
            " ",
            datasets[i]["name"],
            "<<<---",
        )
        tmp_im_list, tmp_gt_list = [], []
        im_dir = datasets[i]["im_dir"]
        gt_dir = datasets[i]["gt_dir"]
        tmp_im_list = glob(os.path.join(im_dir, "*" + "*.[jp][pn]g"))
        tmp_gt_list = glob(os.path.join(gt_dir, "*" + "*.[jp][pn]g"))

        print(
            "-im-", datasets[i]["name"], datasets[i]["im_dir"], ": ", len(tmp_im_list)
        )

        print(
            "-gt-",
            datasets[i]["name"],
            datasets[i]["gt_dir"],
            ": ",
            len(tmp_gt_list),
        )

        if flag == "train":  ## combine multiple training sets into one dataset
            if len(name_im_gt_list) == 0:
                name_im_gt_list.append(
                    {
                        "dataset_name": datasets[i]["name"],
                        "im_path": tmp_im_list,
                        "gt_path": tmp_gt_list,
                        "im_ext": datasets[i]["im_ext"],
                        "gt_ext": datasets[i]["gt_ext"],
                        "cache_dir": datasets[i]["cache_dir"],
                    }
                )
            else:
                name_im_gt_list[0]["dataset_name"] = (
                    name_im_gt_list[0]["dataset_name"] + "_" + datasets[i]["name"]
                )
                name_im_gt_list[0]["im_path"] = (
                    name_im_gt_list[0]["im_path"] + tmp_im_list
                )
                name_im_gt_list[0]["gt_path"] = (
                    name_im_gt_list[0]["gt_path"] + tmp_gt_list
                )
                if datasets[i]["im_ext"] != ".jpg" or datasets[i]["gt_ext"] != ".png":
                    print(
                        "Error: Please make sure all you images and ground truth masks are in jpg and png format respectively !!!"
                    )
                    exit()
                name_im_gt_list[0]["im_ext"] = ".jpg"
                name_im_gt_list[0]["gt_ext"] = ".png"
                name_im_gt_list[0]["cache_dir"] = (
                    os.sep.join(datasets[i]["cache_dir"].split(os.sep)[0:-1])
                    + os.sep
                    + name_im_gt_list[0]["dataset_name"]
                )
        else:  ## keep different validation or inference datasets as separate ones
            name_im_gt_list.append(
                {
                    "dataset_name": datasets[i]["name"],
                    "im_path": tmp_im_list,
                    "gt_path": tmp_gt_list,
                    "im_ext": datasets[i]["im_ext"],
                    "gt_ext": datasets[i]["gt_ext"],
                    "cache_dir": datasets[i]["cache_dir"],
                }
            )

    return name_im_gt_list


def create_dataloaders(
    name_im_gt_list,
    cache_size=[],
    cache_boost=True,
    my_transforms=[],
    batch_size=1,
    shuffle=False,
):
    ## model="train": return one dataloader for training
    ## model="valid": return a list of dataloaders for validation or testing

    gos_dataloaders = []
    gos_datasets = []

    if len(name_im_gt_list) == 0:
        return gos_dataloaders, gos_datasets

    num_workers_ = 1
    if batch_size > 1:
        num_workers_ = 2
    if batch_size > 4:
        num_workers_ = 4
    if batch_size > 8:
        num_workers_ = 8

    for i in range(0, len(name_im_gt_list)):
        gos_dataset = GOSDatasetCache(
            [name_im_gt_list[i]],
            cache_size=cache_size,
            cache_path=name_im_gt_list[i]["cache_dir"],
            cache_boost=cache_boost,
            transform=transforms.Compose(my_transforms),
        )
        gos_dataloaders.append(
            DataLoader(
                gos_dataset,
                batch_size=batch_size,
                shuffle=shuffle,
                num_workers=num_workers_,
            )
        )
        gos_datasets.append(gos_dataset)

    return gos_dataloaders, gos_datasets


def im_reader(im_path):
    return io.imread(im_path)


def im_preprocess(im, size):
    if len(im.shape) < 3:
        im = im[:, :, np.newaxis]
    if im.shape[2] == 1:
        im = np.repeat(im, 3, axis=2)
    im_tensor = torch.tensor(im.copy(), dtype=torch.float32)
    im_tensor = torch.transpose(torch.transpose(im_tensor, 1, 2), 0, 1)
    if len(size) < 2:
        return im_tensor, im.shape[0:2]
    else:
        im_tensor = torch.unsqueeze(im_tensor, 0)
        im_tensor = F.upsample(im_tensor, size, mode="bilinear")
        im_tensor = torch.squeeze(im_tensor, 0)

    return im_tensor.type(torch.uint8), im.shape[0:2]


def gt_preprocess(gt, size):
    if len(gt.shape) > 2:
        gt = gt[:, :, 0]

    gt_tensor = torch.unsqueeze(torch.tensor(gt, dtype=torch.uint8), 0)

    if len(size) < 2:
        return gt_tensor.type(torch.uint8), gt.shape[0:2]
    else:
        gt_tensor = torch.unsqueeze(torch.tensor(gt_tensor, dtype=torch.float32), 0)
        gt_tensor = F.upsample(gt_tensor, size, mode="bilinear")
        gt_tensor = torch.squeeze(gt_tensor, 0)

    return gt_tensor.type(torch.uint8), gt.shape[0:2]
    # return gt_tensor, gt.shape[0:2]


class GOSGridDropout(object):
    def __init__(
        self,
        ratio=0.5,
        unit_size_min=100,
        unit_size_max=100,
        holes_number_x=None,
        holes_number_y=None,
        shift_x=0,
        shift_y=0,
        random_offset=True,
        fill_value=0,
        mask_fill_value=None,
        always_apply=None,
        p=1.0,
    ):
        self.transform = A.GridDropout(
            ratio=ratio,
            unit_size_min=unit_size_min,
            unit_size_max=unit_size_max,
            holes_number_x=holes_number_x,
            holes_number_y=holes_number_y,
            shift_x=shift_x,
            shift_y=shift_y,
            random_offset=random_offset,
            fill_value=fill_value,
            mask_fill_value=mask_fill_value,
            always_apply=always_apply,
            p=p,
        )

    def __call__(self, sample):
        imidx, image, label, shape = (
            sample["imidx"],
            sample["image"],
            sample["label"],
            sample["shape"],
        )

        # Convert the torch tensors to numpy arrays
        image_np = image.permute(1, 2, 0).numpy()

        augmented = self.transform(image=image_np)

        # Convert the numpy arrays back to torch tensors
        image = torch.tensor(augmented["image"]).permute(2, 0, 1)

        return {"imidx": imidx, "image": image, "label": label, "shape": shape}


class GOSRandomHFlip(object):
    def __init__(self, prob=0.5):
        self.prob = prob

    def __call__(self, sample):
        imidx, image, label, shape = (
            sample["imidx"],
            sample["image"],
            sample["label"],
            sample["shape"],
        )

        # random horizontal flip
        if random.random() >= self.prob:
            image = torch.flip(image, dims=[2])
            label = torch.flip(label, dims=[2])

        return {"imidx": imidx, "image": image, "label": label, "shape": shape}


class GOSDatasetCache(Dataset):

    def __init__(
        self,
        name_im_gt_list,
        cache_size=[],
        cache_path="./cache",
        cache_file_name="dataset.json",
        cache_boost=False,
        transform=None,
    ):

        self.cache_size = cache_size
        self.cache_path = cache_path
        self.cache_file_name = cache_file_name
        self.cache_boost_name = ""

        self.cache_boost = cache_boost
        # self.ims_npy = None
        # self.gts_npy = None

        ## cache all the images and ground truth into a single pytorch tensor
        self.ims_pt = None
        self.gts_pt = None

        ## we will cache the npy as well regardless of the cache_boost
        # if(self.cache_boost):
        self.cache_boost_name = cache_file_name.split(".json")[0]

        self.transform = transform

        self.dataset = {}

        ## combine different datasets into one
        dataset_names = []
        dt_name_list = []  # dataset name per image
        im_name_list = []  # image name
        im_path_list = []  # im path
        gt_path_list = []  # gt path
        im_ext_list = []  # im ext
        gt_ext_list = []  # gt ext
        for i in range(0, len(name_im_gt_list)):
            dataset_names.append(name_im_gt_list[i]["dataset_name"])
            # dataset name repeated based on the number of images in this dataset
            dt_name_list.extend(
                [
                    name_im_gt_list[i]["dataset_name"]
                    for x in name_im_gt_list[i]["im_path"]
                ]
            )
            im_name_list.extend(
                [
                    x.split(os.sep)[-1].split(name_im_gt_list[i]["im_ext"])[0]
                    for x in name_im_gt_list[i]["im_path"]
                ]
            )
            im_path_list.extend(name_im_gt_list[i]["im_path"])
            gt_path_list.extend(name_im_gt_list[i]["gt_path"])
            im_ext_list.extend(
                [name_im_gt_list[i]["im_ext"] for x in name_im_gt_list[i]["im_path"]]
            )
            gt_ext_list.extend(
                [name_im_gt_list[i]["gt_ext"] for x in name_im_gt_list[i]["gt_path"]]
            )

        self.dataset["data_name"] = dt_name_list
        self.dataset["im_name"] = im_name_list
        self.dataset["im_path"] = im_path_list
        self.dataset["ori_im_path"] = deepcopy(im_path_list)
        self.dataset["gt_path"] = gt_path_list
        self.dataset["ori_gt_path"] = deepcopy(gt_path_list)
        self.dataset["im_shp"] = []
        self.dataset["gt_shp"] = []
        self.dataset["im_ext"] = im_ext_list
        self.dataset["gt_ext"] = gt_ext_list

        self.dataset["ims_pt_dir"] = ""
        self.dataset["gts_pt_dir"] = ""

        self.dataset = self.manage_cache(dataset_names)

    def manage_cache(self, dataset_names):
        if not os.path.exists(self.cache_path):  # create the folder for cache
            os.makedirs(self.cache_path)
        cache_folder = os.path.join(
            self.cache_path,
            "_".join(dataset_names) + "_" + "x".join([str(x) for x in self.cache_size]),
        )
        if not os.path.exists(
            cache_folder
        ):  # check if the cache files are there, if not then cache
            return self.cache(cache_folder)
        return self.load_cache(cache_folder)

    def cache(self, cache_folder):
        os.mkdir(cache_folder)
        cached_dataset = deepcopy(self.dataset)

        # ims_list = []
        # gts_list = []
        ims_pt_list = []
        gts_pt_list = []
        for i, im_path in tqdm(
            enumerate(self.dataset["im_path"]), total=len(self.dataset["im_path"])
        ):

            im_id = cached_dataset["im_name"][i]
            print("im_path: ", im_path)
            im = im_reader(im_path)
            im, im_shp = im_preprocess(im, self.cache_size)
            im_cache_file = os.path.join(
                cache_folder, self.dataset["data_name"][i] + "_" + im_id + "_im.pt"
            )
            torch.save(im, im_cache_file)

            cached_dataset["im_path"][i] = im_cache_file
            if self.cache_boost:
                ims_pt_list.append(torch.unsqueeze(im, 0))
            # ims_list.append(im.cpu().data.numpy().astype(np.uint8))

            gt = np.zeros(im.shape[0:2])
            if len(self.dataset["gt_path"]) != 0:
                gt = im_reader(self.dataset["gt_path"][i])
            gt, gt_shp = gt_preprocess(gt, self.cache_size)
            gt_cache_file = os.path.join(
                cache_folder, self.dataset["data_name"][i] + "_" + im_id + "_gt.pt"
            )
            torch.save(gt, gt_cache_file)
            if len(self.dataset["gt_path"]) > 0:
                cached_dataset["gt_path"][i] = gt_cache_file
            else:
                cached_dataset["gt_path"].append(gt_cache_file)
            if self.cache_boost:
                gts_pt_list.append(torch.unsqueeze(gt, 0))
            # gts_list.append(gt.cpu().data.numpy().astype(np.uint8))

            # im_shp_cache_file = os.path.join(cache_folder,im_id + "_im_shp.pt")
            # torch.save(gt_shp, shp_cache_file)
            cached_dataset["im_shp"].append(im_shp)
            # self.dataset["im_shp"].append(im_shp)

            # shp_cache_file = os.path.join(cache_folder,im_id + "_gt_shp.pt")
            # torch.save(gt_shp, shp_cache_file)
            cached_dataset["gt_shp"].append(gt_shp)
            # self.dataset["gt_shp"].append(gt_shp)

        if self.cache_boost:
            cached_dataset["ims_pt_dir"] = os.path.join(
                cache_folder, self.cache_boost_name + "_ims.pt"
            )
            cached_dataset["gts_pt_dir"] = os.path.join(
                cache_folder, self.cache_boost_name + "_gts.pt"
            )
            self.ims_pt = torch.cat(ims_pt_list, dim=0)
            self.gts_pt = torch.cat(gts_pt_list, dim=0)
            torch.save(torch.cat(ims_pt_list, dim=0), cached_dataset["ims_pt_dir"])
            torch.save(torch.cat(gts_pt_list, dim=0), cached_dataset["gts_pt_dir"])

        try:
            json_file = open(os.path.join(cache_folder, self.cache_file_name), "w")
            json.dump(cached_dataset, json_file)
            json_file.close()
        except Exception:
            raise FileNotFoundError("Cannot create JSON")
        return cached_dataset

    def load_cache(self, cache_folder):
        json_file = open(os.path.join(cache_folder, self.cache_file_name), "r")
        dataset = json.load(json_file)
        json_file.close()
        ## if cache_boost is true, we will load the image npy and ground truth npy into the RAM
        ## otherwise the pytorch tensor will be loaded
        if self.cache_boost:
            # self.ims_npy = np.load(dataset["ims_npy_dir"])
            # self.gts_npy = np.load(dataset["gts_npy_dir"])
            self.ims_pt = torch.load(dataset["ims_pt_dir"], map_location="cpu")
            self.gts_pt = torch.load(dataset["gts_pt_dir"], map_location="cpu")
        return dataset

    def __len__(self):
        return len(self.dataset["im_path"])

    def __getitem__(self, idx):

        im = None
        gt = None
        if self.cache_boost and self.ims_pt is not None:

            # start = time.time()
            im = self.ims_pt[idx]  # .type(torch.float32)
            gt = self.gts_pt[idx]  # .type(torch.float32)
            # print(idx, 'time for pt loading: ', time.time()-start)

        else:
            # import time
            # start = time.time()
            # print("tensor***")
            im_pt_path = os.path.join(
                self.cache_path,
                os.sep.join(self.dataset["im_path"][idx].split(os.sep)[-2:]),
            )
            im = torch.load(im_pt_path)  # (self.dataset["im_path"][idx])
            gt_pt_path = os.path.join(
                self.cache_path,
                os.sep.join(self.dataset["gt_path"][idx].split(os.sep)[-2:]),
            )
            gt = torch.load(gt_pt_path)  # (self.dataset["gt_path"][idx])
            # print(idx,'time for tensor loading: ', time.time()-start)

        im_shp = self.dataset["im_shp"][idx]
        # print("time for loading im and gt: ", time.time()-start)

        # start_time = time.time()
        im = torch.divide(im, 255.0)
        gt = torch.divide(gt, 255.0)
        # print(idx, 'time for normalize torch divide: ', time.time()-start_time)

        sample = {
            "imidx": torch.from_numpy(np.array(idx)),
            "image": im,
            "label": gt,
            "shape": torch.from_numpy(np.array(im_shp)),
        }

        if self.transform:
            sample = self.transform(sample)

        return sample