File size: 15,711 Bytes
92c1934 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import os
import time
import torch, gc
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
from pathlib import Path
from models.ormbg import ORMBG
from skimage import io
from basics import f1_mae_torch
from data_loader_cache import (
get_im_gt_name_dict,
create_dataloaders,
GOSGridDropout,
GOSRandomHFlip,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
def valid(net, valid_dataloaders, valid_datasets, hypar, epoch=0):
net.eval()
print("Validating...")
epoch_num = hypar["max_epoch_num"]
val_loss = 0.0
tar_loss = 0.0
val_cnt = 0.0
tmp_f1 = []
tmp_mae = []
tmp_time = []
start_valid = time.time()
for k in range(len(valid_dataloaders)):
valid_dataloader = valid_dataloaders[k]
valid_dataset = valid_datasets[k]
val_num = valid_dataset.__len__()
mybins = np.arange(0, 256)
PRE = np.zeros((val_num, len(mybins) - 1))
REC = np.zeros((val_num, len(mybins) - 1))
F1 = np.zeros((val_num, len(mybins) - 1))
MAE = np.zeros((val_num))
for i_val, data_val in enumerate(valid_dataloader):
val_cnt = val_cnt + 1.0
imidx_val, inputs_val, labels_val, shapes_val = (
data_val["imidx"],
data_val["image"],
data_val["label"],
data_val["shape"],
)
if hypar["model_digit"] == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
labels_val = labels_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
labels_val = labels_val.type(torch.HalfTensor)
# wrap them in Variable
if torch.cuda.is_available():
inputs_val_v, labels_val_v = Variable(
inputs_val.cuda(), requires_grad=False
), Variable(labels_val.cuda(), requires_grad=False)
else:
inputs_val_v, labels_val_v = Variable(
inputs_val, requires_grad=False
), Variable(labels_val, requires_grad=False)
t_start = time.time()
ds_val = net(inputs_val_v)[0]
t_end = time.time() - t_start
tmp_time.append(t_end)
# loss2_val, loss_val = muti_loss_fusion(ds_val, labels_val_v)
loss2_val, loss_val = net.compute_loss(ds_val, labels_val_v)
# compute F measure
for t in range(hypar["batch_size_valid"]):
i_test = imidx_val[t].data.numpy()
pred_val = ds_val[0][t, :, :, :] # B x 1 x H x W
## recover the prediction spatial size to the orignal image size
pred_val = torch.squeeze(
F.upsample(
torch.unsqueeze(pred_val, 0),
(shapes_val[t][0], shapes_val[t][1]),
mode="bilinear",
)
)
# pred_val = normPRED(pred_val)
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val - mi) / (ma - mi) # max = 1
if len(valid_dataset.dataset["ori_gt_path"]) != 0:
gt = np.squeeze(
io.imread(valid_dataset.dataset["ori_gt_path"][i_test])
) # max = 255
if gt.max() == 1:
gt = gt * 255
else:
gt = np.zeros((shapes_val[t][0], shapes_val[t][1]))
with torch.no_grad():
gt = torch.tensor(gt).to(device)
pre, rec, f1, mae = f1_mae_torch(
pred_val * 255, gt, valid_dataset, i_test, mybins, hypar
)
PRE[i_test, :] = pre
REC[i_test, :] = rec
F1[i_test, :] = f1
MAE[i_test] = mae
del ds_val, gt
gc.collect()
torch.cuda.empty_cache()
# if(loss_val.data[0]>1):
val_loss += loss_val.item() # data[0]
tar_loss += loss2_val.item() # data[0]
print(
"[validating: %5d/%5d] val_ls:%f, tar_ls: %f, f1: %f, mae: %f, time: %f"
% (
i_val,
val_num,
val_loss / (i_val + 1),
tar_loss / (i_val + 1),
np.amax(F1[i_test, :]),
MAE[i_test],
t_end,
)
)
del loss2_val, loss_val
print("============================")
PRE_m = np.mean(PRE, 0)
REC_m = np.mean(REC, 0)
f1_m = (1 + 0.3) * PRE_m * REC_m / (0.3 * PRE_m + REC_m + 1e-8)
tmp_f1.append(np.amax(f1_m))
tmp_mae.append(np.mean(MAE))
return tmp_f1, tmp_mae, val_loss, tar_loss, i_val, tmp_time
def train(
net,
optimizer,
train_dataloaders,
train_datasets,
valid_dataloaders,
valid_datasets,
hypar,
):
model_path = hypar["model_path"]
model_save_fre = hypar["model_save_fre"]
max_ite = hypar["max_ite"]
batch_size_train = hypar["batch_size_train"]
batch_size_valid = hypar["batch_size_valid"]
if not os.path.exists(model_path):
os.mkdir(model_path)
ite_num = hypar["start_ite"] # count the toal iteration number
ite_num4val = 0 #
running_loss = 0.0 # count the toal loss
running_tar_loss = 0.0 # count the target output loss
last_f1 = [0 for x in range(len(valid_dataloaders))]
train_num = train_datasets[0].__len__()
net.train()
start_last = time.time()
gos_dataloader = train_dataloaders[0]
epoch_num = hypar["max_epoch_num"]
notgood_cnt = 0
for epoch in range(epoch_num):
for i, data in enumerate(gos_dataloader):
if ite_num >= max_ite:
print("Training Reached the Maximal Iteration Number ", max_ite)
exit()
# start_read = time.time()
ite_num = ite_num + 1
ite_num4val = ite_num4val + 1
# get the inputs
inputs, labels = data["image"], data["label"]
if hypar["model_digit"] == "full":
inputs = inputs.type(torch.FloatTensor)
labels = labels.type(torch.FloatTensor)
else:
inputs = inputs.type(torch.HalfTensor)
labels = labels.type(torch.HalfTensor)
# wrap them in Variable
if torch.cuda.is_available():
inputs_v, labels_v = Variable(
inputs.cuda(), requires_grad=False
), Variable(labels.cuda(), requires_grad=False)
else:
inputs_v, labels_v = Variable(inputs, requires_grad=False), Variable(
labels, requires_grad=False
)
# y zero the parameter gradients
start_inf_loss_back = time.time()
optimizer.zero_grad()
ds, _ = net(inputs_v)
loss2, loss = net.compute_loss(ds, labels_v)
loss.backward()
optimizer.step()
# # print statistics
running_loss += loss.item()
running_tar_loss += loss2.item()
# del outputs, loss
del ds, loss2, loss
end_inf_loss_back = time.time() - start_inf_loss_back
print(
">>>"
+ model_path.split("/")[-1]
+ " - [epoch: %3d/%3d, batch: %5d/%5d, ite: %d] train loss: %3f, tar: %3f, time-per-iter: %3f s, time_read: %3f"
% (
epoch + 1,
epoch_num,
(i + 1) * batch_size_train,
train_num,
ite_num,
running_loss / ite_num4val,
running_tar_loss / ite_num4val,
time.time() - start_last,
time.time() - start_last - end_inf_loss_back,
)
)
start_last = time.time()
if ite_num % model_save_fre == 0: # validate every 2000 iterations
notgood_cnt += 1
net.eval()
tmp_f1, tmp_mae, val_loss, tar_loss, i_val, tmp_time = valid(
net, valid_dataloaders, valid_datasets, hypar, epoch
)
net.train() # resume train
tmp_out = 0
print("last_f1:", last_f1)
print("tmp_f1:", tmp_f1)
for fi in range(len(last_f1)):
if tmp_f1[fi] > last_f1[fi]:
tmp_out = 1
print("tmp_out:", tmp_out)
if tmp_out:
notgood_cnt = 0
last_f1 = tmp_f1
tmp_f1_str = [str(round(f1x, 4)) for f1x in tmp_f1]
tmp_mae_str = [str(round(mx, 4)) for mx in tmp_mae]
maxf1 = "_".join(tmp_f1_str)
meanM = "_".join(tmp_mae_str)
# .cpu().detach().numpy()
model_name = (
"/gpu_itr_"
+ str(ite_num)
+ "_traLoss_"
+ str(np.round(running_loss / ite_num4val, 4))
+ "_traTarLoss_"
+ str(np.round(running_tar_loss / ite_num4val, 4))
+ "_valLoss_"
+ str(np.round(val_loss / (i_val + 1), 4))
+ "_valTarLoss_"
+ str(np.round(tar_loss / (i_val + 1), 4))
+ "_maxF1_"
+ maxf1
+ "_mae_"
+ meanM
+ "_time_"
+ str(
np.round(np.mean(np.array(tmp_time)) / batch_size_valid, 6)
)
+ ".pth"
)
torch.save(net.state_dict(), model_path + model_name)
running_loss = 0.0
running_tar_loss = 0.0
ite_num4val = 0
if notgood_cnt >= hypar["early_stop"]:
print(
"No improvements in the last "
+ str(notgood_cnt)
+ " validation periods, so training stopped !"
)
exit()
print("Training Reaches The Maximum Epoch Number")
def main(train_datasets, valid_datasets, hypar):
print("--- create training dataloader ---")
train_nm_im_gt_list = get_im_gt_name_dict(train_datasets, flag="train")
## build dataloader for training datasets
train_dataloaders, train_datasets = create_dataloaders(
train_nm_im_gt_list,
cache_size=hypar["cache_size"],
cache_boost=hypar["cache_boost_train"],
my_transforms=[GOSGridDropout(), GOSRandomHFlip()],
batch_size=hypar["batch_size_train"],
shuffle=True,
)
valid_nm_im_gt_list = get_im_gt_name_dict(valid_datasets, flag="valid")
valid_dataloaders, valid_datasets = create_dataloaders(
valid_nm_im_gt_list,
cache_size=hypar["cache_size"],
cache_boost=hypar["cache_boost_valid"],
my_transforms=[],
batch_size=hypar["batch_size_valid"],
shuffle=False,
)
net = hypar["model"]
if hypar["model_digit"] == "half":
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
if torch.cuda.is_available():
net.cuda()
if hypar["restore_model"] != "":
print("restore model from:")
print(hypar["model_path"] + "/" + hypar["restore_model"])
if torch.cuda.is_available():
net.load_state_dict(
torch.load(hypar["model_path"] + "/" + hypar["restore_model"])
)
else:
net.load_state_dict(
torch.load(
hypar["model_path"] + "/" + hypar["restore_model"],
map_location="cpu",
)
)
optimizer = optim.Adam(
net.parameters(), lr=1e-3, betas=(0.9, 0.999), eps=1e-08, weight_decay=0
)
train(
net,
optimizer,
train_dataloaders,
train_datasets,
valid_dataloaders,
valid_datasets,
hypar,
)
if __name__ == "__main__":
output_model_folder = "saved_models"
Path(output_model_folder).mkdir(parents=True, exist_ok=True)
train_datasets, valid_datasets = [], []
dataset_1, dataset_1 = {}, {}
dataset_training = {
"name": "ormbg-training",
"im_dir": str(Path("dataset", "training", "im")),
"gt_dir": str(Path("dataset", "training", "gt")),
"im_ext": ".png",
"gt_ext": ".png",
"cache_dir": str(Path("cache", "teacher", "training")),
}
dataset_validation = {
"name": "ormbg-training",
"im_dir": str(Path("dataset", "validation", "im")),
"gt_dir": str(Path("dataset", "validation", "gt")),
"im_ext": ".png",
"gt_ext": ".png",
"cache_dir": str(Path("cache", "teacher", "validation")),
}
train_datasets = [dataset_training]
valid_datasets = [dataset_validation]
### --------------- STEP 2: Configuring the hyperparamters for Training, validation and inferencing ---------------
hypar = {}
hypar["model"] = ORMBG()
hypar["seed"] = 0
## model weights path
hypar["model_path"] = "saved_models"
## name of the segmentation model weights .pth for resume training process from last stop or for the inferencing
hypar["restore_model"] = ""
## start iteration for the training, can be changed to match the restored training process
hypar["start_ite"] = 0
## indicates "half" or "full" accuracy of float number
hypar["model_digit"] = "full"
## To handle large size input images, which take a lot of time for loading in training,
# we introduce the cache mechanism for pre-convering and resizing the jpg and png images into .pt file
hypar["cache_size"] = [
1024,
1024,
]
## cached input spatial resolution, can be configured into different size
## "True" or "False", indicates wheather to load all the training datasets into RAM, True will greatly speed the training process while requires more RAM
hypar["cache_boost_train"] = False
## "True" or "False", indicates wheather to load all the validation datasets into RAM, True will greatly speed the training process while requires more RAM
hypar["cache_boost_valid"] = False
## stop the training when no improvement in the past 20 validation periods, smaller numbers can be used here e.g., 5 or 10.
hypar["early_stop"] = 20
## valid and save model weights every 2000 iterations
hypar["model_save_fre"] = 2000
## batch size for training
hypar["batch_size_train"] = 8
## batch size for validation and inferencing
hypar["batch_size_valid"] = 1
## if early stop couldn't stop the training process, stop it by the max_ite_num
hypar["max_ite"] = 10000000
## if early stop and max_ite couldn't stop the training process, stop it by the max_epoch_num
hypar["max_epoch_num"] = 1000000
main(train_datasets, valid_datasets, hypar=hypar)
|