File size: 9,417 Bytes
b070298
97181a1
d6e1e20
f823d62
b070298
3a15783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b070298
 
3a15783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b070298
 
3a15783
b070298
3a15783
 
 
39756f7
3a15783
 
 
b070298
3a15783
 
 
 
 
 
b070298
3a15783
 
 
 
 
 
 
 
97181a1
 
 
 
 
 
 
 
 
d6e1e20
97181a1
 
 
 
3a15783
d6e1e20
97181a1
d6e1e20
97181a1
d6e1e20
 
97181a1
 
 
 
d6e1e20
97181a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f823d62
 
 
3a15783
d6e1e20
 
 
b070298
 
3a15783
 
97181a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6e1e20
97181a1
 
 
d6e1e20
 
 
 
 
 
 
 
 
 
97181a1
3a15783
97181a1
 
3a15783
d6e1e20
 
 
97181a1
aace1e6
d6e1e20
 
 
 
 
b070298
3a15783
39756f7
3a15783
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image as PILImage

# Define the 44 BFI questions
questions = [
    "1. Talks a lot",
    "2. Notices other people’s weak points",
    "3. Does things carefully and completely",
    "4. Is sad, depressed",
    "5. Is original, comes up with new ideas",
    "6. Keeps their thoughts to themselves",
    "7. Is helpful and not selfish with others",
    "8. Can be kind of careless",
    "9. Is relaxed, handles stress well",
    "10. Is curious about lots of different things",
    "11. Has a lot of energy",
    "12. Starts arguments with others",
    "13. Is a good, hard worker",
    "14. Can be tense; not always easy going",
    "15. Clever; thinks a lot",
    "16. Makes things exciting",
    "17. Forgives others easily",
    "18. Isn’t very organized",
    "19. Worries a lot",
    "20. Has a good, active imagination",
    "21. Tends to be quiet",
    "22. Usually trusts people",
    "23. Tends to be lazy",
    "24. Doesn’t get upset easily; steady",
    "25. Is creative and inventive",
    "26. Has a good, strong personality",
    "27. Can be cold and distant with others",
    "28. Keeps working until things are done",
    "29. Can be moody",
    "30. Likes artistic and creative experiences",
    "31. Is kind of shy",
    "32. Kind and considerate to almost everyone",
    "33. Does things quickly and carefully",
    "34. Stays calm in difficult situations",
    "35. Likes work that is the same every time",
    "36. Is outgoing; likes to be with people",
    "37. Is sometimes rude to others",
    "38. Makes plans and sticks to them",
    "39. Get nervous easily",
    "40. Likes to think and play with ideas",
    "41. Doesn’t like artistic things (plays, music)",
    "42. Likes to cooperate; goes along with others",
    "43. Has trouble paying attention",
    "44. Knows a lot about art, music and books"
]

# Scoring function based on the provided SPSS syntax
def compute_bfi_scores(*args):
    responses = list(args)
    # Convert 'No response' to None, else to int
    processed = []
    for r in responses:
        if r == "No response":
            processed.append(None)
        else:
            processed.append(int(r))
    
    # Define traits with their respective items and scoring parameters
    traits = {
        'Extraversion': {
            'positive': [1, 11, 16, 26, 36],
            'reverse': [6, 21, 31],
            'threshold': 1,
            'formula_pos_mult': 5,
            'formula_reverse_mult': 3,
            'formula_reverse_const': 12
        },
        'Agreeableness': {
            'positive': [7, 17, 22, 32, 42],
            'reverse': [2, 12, 27, 37],
            'threshold': 1,
            'formula_pos_mult': 5,
            'formula_reverse_mult':4,
            'formula_reverse_const':16
        },
        'Conscientiousness': {
            'positive': [3, 13, 28, 33, 38],
            'reverse': [8, 18, 23, 43],
            'threshold': 1,
            'formula_pos_mult':5,
            'formula_reverse_mult':4,
            'formula_reverse_const':16
        },
        'Neuroticism':{
            'positive':[4, 14, 19, 29, 39],
            'reverse':[9, 24, 34],
            'threshold':1,
            'formula_pos_mult':5,
            'formula_reverse_mult':3,
            'formula_reverse_const':12
        },
        'Openness':{
            'positive':[5, 10, 15, 20, 25, 30, 40, 44],
            'reverse':[35, 41],
            'threshold':2,
            'formula_pos_mult':8,
            'formula_reverse_mult':2,
            'formula_reverse_const':8
        }
    }

    scores = {}

    for trait, info in traits.items():
        pos_items = [processed[i-1] for i in info['positive']]
        rev_items = [processed[i-1] for i in info['reverse']]

        missing_pos = pos_items.count(None)
        missing_rev = rev_items.count(None)
        total_missing = missing_pos + missing_rev

        if total_missing > info['threshold']:
            scores[trait] = "Incomplete"
        else:
            # Compute means, ignoring None
            pos_values = [x for x in pos_items if x is not None]
            rev_values = [x for x in rev_items if x is not None]

            mean_pos = sum(pos_values) / len(pos_values) if pos_values else 0
            mean_rev = sum(rev_values) / len(rev_values) if rev_values else 0

            # Apply the scoring formula
            score = (mean_pos * info['formula_pos_mult']) + (info['formula_reverse_const'] - (mean_rev * info['formula_reverse_mult']))
            score = round(score, 2)
            scores[trait] = score

    # Prepare the output in Markdown format with explanations
    explanations = {
        'Extraversion': "Extraversion reflects how outgoing and energetic you are. High scores indicate sociability and enthusiasm, while low scores suggest a more reserved and solitary nature.",
        'Agreeableness': "Agreeableness measures your tendency to be compassionate and cooperative. High scores signify kindness and trust, whereas low scores may indicate competitiveness or skepticism.",
        'Conscientiousness': "Conscientiousness assesses your level of self-discipline and organization. High scores denote reliability and thoroughness, while low scores might reflect a more spontaneous or disorganized approach.",
        'Neuroticism': "Neuroticism indicates emotional stability and susceptibility to stress. High scores suggest a tendency towards anxiety and moodiness, whereas low scores imply calmness and resilience.",
        'Openness': "Openness measures your openness to new experiences and creativity. High scores are associated with imagination and curiosity, while low scores may indicate practicality and preference for routine."
    }

    markdown_output = "## Your Big Five Personality Traits Scores\n\n"

    # Prepare data for visualization
    trait_names = []
    trait_scores = []
    for trait, score in scores.items():
        markdown_output += f"### **{trait}**\n"
        if score == "Incomplete":
            markdown_output += "Insufficient responses to compute this trait.\n\n"
        else:
            markdown_output += f"**Score**: {score}\n\n"
            markdown_output += f"{explanations[trait]}\n\n"
            trait_names.append(trait)
            trait_scores.append(score)
    
    # Generate bar chart
    image = None
    if trait_scores:
        fig, ax = plt.subplots(figsize=(8, 4))
        bars = ax.bar(trait_names, trait_scores, color='skyblue')
        ax.set_ylim(0, max(trait_scores) + 10)
        ax.set_ylabel('Score')
        ax.set_title('Big Five Traits Scores')

        # Add score labels on top of bars
        for bar in bars:
            height = bar.get_height()
            ax.annotate(f'{height}',
                        xy=(bar.get_x() + bar.get_width() / 2, height),
                        xytext=(0, 3),  # 3 points vertical offset
                        textcoords="offset points",
                        ha='center', va='bottom')
        
        plt.tight_layout()
        # Save the plot to a PNG image in memory
        buf = BytesIO()
        plt.savefig(buf, format='png')
        buf.seek(0)
        plt.close(fig)
        # Convert bytes to PIL Image
        image = PILImage.open(buf)
        buf.close()

        markdown_output += "### **Trait Scores Visualization**\n\n"

    return markdown_output, image

# Create the Gradio interface
def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Big Five Inventory (BFI) Quiz")
        gr.Markdown(
            """
            Please rate the following statements on a scale from **1 (Disagree a lot)** to **5 (Agree a lot)**.
            If you prefer not to respond to a particular statement, select **'No response'**.
            """
        )

        # Organize questions into expandable sections by trait
        trait_question_map = {
            'Extraversion': [1, 6, 11, 16, 21, 26, 31, 36],
            'Agreeableness': [2, 7, 12, 17, 22, 27, 32, 37, 42],
            'Conscientiousness': [3, 8, 13, 18, 23, 28, 33, 38, 43],
            'Neuroticism': [4, 9, 14, 19, 24, 29, 34, 39],
            'Openness': [5, 10, 15, 20, 25, 30, 35, 40, 41, 44]
        }

        inputs = []

        with gr.Accordion("Answer the Questions", open=True):
            for trait, q_indices in trait_question_map.items():
                with gr.Accordion(trait, open=False):
                    for i in q_indices:
                        q = questions[i-1]
                        radio = gr.Radio(
                            choices=["No response", 1, 2, 3, 4, 5],
                            label=q,
                            value="No response",
                            interactive=True
                        )
                        inputs.append(radio)

        # Submit button
        submit_btn = gr.Button("Submit", variant="primary")

        # Results display
        with gr.Row():
            markdown_result = gr.Markdown(label="Textual Results")
            image_result = gr.Image(label="Trait Scores Visualization")

        # Link the button to the function
        submit_btn.click(
            fn=compute_bfi_scores, 
            inputs=inputs, 
            outputs=[markdown_result, image_result]
        )

    return demo

# Launch the interface
demo = create_interface()
demo.launch()