Spaces:
Runtime error
Runtime error
Commit
·
6796bfc
1
Parent(s):
1cf959e
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
3 |
import twint
|
4 |
import nest_asyncio
|
5 |
import multiprocessing.pool
|
@@ -13,6 +14,8 @@ import csv
|
|
13 |
import urllib.request
|
14 |
import IPython.display as ipd
|
15 |
|
|
|
|
|
16 |
# Preprocess text (username and link placeholders)
|
17 |
def preprocess(text):
|
18 |
new_text = []
|
@@ -76,11 +79,11 @@ def get_tweets(username, limit=500, save_name=None):
|
|
76 |
df.to_csv(save_name)
|
77 |
return df
|
78 |
|
79 |
-
st.title('
|
80 |
|
81 |
|
82 |
with st.form("my_form"):
|
83 |
-
st.write("
|
84 |
user = st.text_input("Twitter Username")
|
85 |
n_tweets = st.slider('How Many Tweets', 20, 2000, 20)
|
86 |
|
@@ -94,5 +97,8 @@ if submitted:
|
|
94 |
st.write("Calculating sentiments...")
|
95 |
tweets['sentiment'] = tweets['tweet'].map(lambda s: combined_score(s))
|
96 |
st.write("Average sentiment:", tweets.sentiment.mean())
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
from matplotlib import pyplot as plt
|
4 |
import twint
|
5 |
import nest_asyncio
|
6 |
import multiprocessing.pool
|
|
|
14 |
import urllib.request
|
15 |
import IPython.display as ipd
|
16 |
|
17 |
+
title = st.title('Loading')
|
18 |
+
|
19 |
# Preprocess text (username and link placeholders)
|
20 |
def preprocess(text):
|
21 |
new_text = []
|
|
|
79 |
df.to_csv(save_name)
|
80 |
return df
|
81 |
|
82 |
+
title = st.title('Twitter Sentiment Map Thingee')
|
83 |
|
84 |
|
85 |
with st.form("my_form"):
|
86 |
+
st.write("Parameters:")
|
87 |
user = st.text_input("Twitter Username")
|
88 |
n_tweets = st.slider('How Many Tweets', 20, 2000, 20)
|
89 |
|
|
|
97 |
st.write("Calculating sentiments...")
|
98 |
tweets['sentiment'] = tweets['tweet'].map(lambda s: combined_score(s))
|
99 |
st.write("Average sentiment:", tweets.sentiment.mean())
|
100 |
+
fig, axs = plt.subplots(1, 2)
|
101 |
+
axs[0].hexbin(tweets['tweet_length'], tweets['sentiment']*1,
|
102 |
+
gridsize=20, bins=12, cmap='inferno')
|
103 |
+
axs[1].scatter(tweets['tweet_length'], tweets['sentiment'])
|
104 |
+
st.pyplot(fig)
|