creative_ads / app.py
joeshore's picture
Update app.py
a1807ec
import streamlit as st
import time
import requests
st.header("DeeplySorry")
all_input = st.text_area('模型输入', value="""
今天,我们正式发布名为 DeeplySorry 的大规模神经网络模型,它可以代替您向您珍惜的亲人、朋友、爱人道歉。\n""", height=100)
top_p = st.slider('top_p', 0.0, 1.0, 0.95)
temperature = st.slider('temperature', 0.0, 1.0, 0.85)
max_tokens = st.slider('max tokens', 4, 512, 64)
model_type = st.selectbox('model', ('large', 'xl'))
def completion(prompt):
start = time.monotonic()
resp = requests.post('https://welm.weixin.qq.com/v1/completions', json={
'prompt': prompt,
'model': model_type,
'max_tokens': max_tokens,
'temperature': temperature,
'top_p': top_p,
'n': 5,
'stop': None,
# 'stop': [[13, 13]],
}, headers={"Authorization": f"Bearer {st.secrets['token']}"})
if resp.status_code != 200:
st.error(f'Bad response: {resp}, {resp.text}')
else:
answers = resp.json()
st.json(answers)
answers = [c['text'] for c in answers['choices'] if c['text'] is not None]
cols = st.columns(3)
for idx, answer in enumerate(answers):
if idx >= 3:
break
with cols[idx]:
content = (prompt + answer).replace("\n", "\n\n")
st.markdown(f'## 版本{idx}\n\n{content}')
end = time.monotonic()
st.text(f'耗时:{end - start}')
if st.button('开始生成/换一批'):
completion(all_input)