Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import time | |
| import requests | |
| st.header("DeeplySorry") | |
| all_input = st.text_area('模型输入', value=""" | |
| 今天,我们正式发布名为 DeeplySorry 的大规模神经网络模型,它可以代替您向您珍惜的亲人、朋友、爱人道歉。\n""", height=100) | |
| top_p = st.slider('top_p', 0.0, 1.0, 0.95) | |
| temperature = st.slider('temperature', 0.0, 1.0, 0.85) | |
| max_tokens = st.slider('max tokens', 4, 512, 64) | |
| model_type = st.selectbox('model', ('large', 'xl')) | |
| def completion(prompt): | |
| start = time.monotonic() | |
| resp = requests.post('https://welm.weixin.qq.com/v1/completions', json={ | |
| 'prompt': prompt, | |
| 'model': model_type, | |
| 'max_tokens': max_tokens, | |
| 'temperature': temperature, | |
| 'top_p': top_p, | |
| 'n': 5, | |
| 'stop': None, | |
| # 'stop': [[13, 13]], | |
| }, headers={"Authorization": f"Bearer {st.secrets['token']}"}) | |
| if resp.status_code != 200: | |
| st.error(f'Bad response: {resp}, {resp.text}') | |
| else: | |
| answers = resp.json() | |
| st.json(answers) | |
| answers = [c['text'] for c in answers['choices'] if c['text'] is not None] | |
| cols = st.columns(3) | |
| for idx, answer in enumerate(answers): | |
| if idx >= 3: | |
| break | |
| with cols[idx]: | |
| content = (prompt + answer).replace("\n", "\n\n") | |
| st.markdown(f'## 版本{idx}\n\n{content}') | |
| end = time.monotonic() | |
| st.text(f'耗时:{end - start}') | |
| if st.button('开始生成/换一批'): | |
| completion(all_input) | |