Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,60 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
temperature=temperature,
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
model_name = "joelelangovan/tamil-llama-genesis-finetuned"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_name,
|
10 |
+
device_map="auto",
|
11 |
+
torch_dtype=torch.float16,
|
12 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def generate_response(instruction, temperature=0.7, max_length=512):
|
15 |
+
# Format the input text
|
16 |
+
input_text = f"### Instruction: {instruction}\n\n### Response:"
|
17 |
+
|
18 |
+
# Tokenize
|
19 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
20 |
+
|
21 |
+
# Generate
|
22 |
+
outputs = model.generate(
|
23 |
+
**inputs,
|
24 |
+
max_length=max_length,
|
25 |
+
num_return_sequences=1,
|
26 |
temperature=temperature,
|
27 |
+
do_sample=True,
|
28 |
+
pad_token_id=tokenizer.eos_token_id
|
29 |
+
)
|
30 |
+
|
31 |
+
# Decode and return response
|
32 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
33 |
+
# Remove the instruction part from response
|
34 |
+
response = response.split("### Response:")[-1].strip()
|
35 |
+
return response
|
36 |
+
|
37 |
+
# Example prompts
|
38 |
+
example_prompts = [
|
39 |
+
["ஆதியாகமம் 1:1 வசனத்தின் பொருளை விளக்குங்கள்"],
|
40 |
+
["ஆதியாகமம் 1:2 வசனத்தை தமிழில் விவரிக்கவும்"],
|
41 |
+
["ஆதியாகமம் 1:3 வசனத்தின் முக்கிய கருத்து என்ன?"]
|
42 |
+
]
|
43 |
+
|
44 |
+
# Create Gradio interface
|
45 |
+
demo = gr.Interface(
|
46 |
+
fn=generate_response,
|
47 |
+
inputs=[
|
48 |
+
gr.Textbox(label="கேள்வி / வினா", placeholder="உங்கள் கேள்வியை இங்கே உள்ளிடவும்..."),
|
49 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"),
|
50 |
+
gr.Slider(minimum=64, maximum=1024, value=512, step=64, label="Max Length"),
|
51 |
],
|
52 |
+
outputs=gr.Textbox(label="பதில்"),
|
53 |
+
title="Tamil LLaMA - ஆதியாகமம் விளக்க உதவி",
|
54 |
+
description="ஆதியாகமம் முதல் அதிகாரம் பற்றிய கேள்விகளுக்கு விளக்கம் அளிக்கும் AI மாதிரி",
|
55 |
+
examples=example_prompts,
|
56 |
+
allow_flagging="never",
|
57 |
)
|
58 |
|
59 |
+
# Launch the demo
|
60 |
+
demo.launch()
|
|