joaogante HF staff commited on
Commit
c8c8758
·
1 Parent(s): 52ed45c

final tweaks

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -144,10 +144,10 @@ FIG_DPI = 300
144
 
145
  def get_plot(model_name, plot_eager, generate_type):
146
  df = pd.DataFrame(BENCHMARK_DATA[generate_type][model_name])
147
- df["framework"] = ["PyTorch", "TF (Eager Execition)", "TF (XLA)"]
148
  df = pd.melt(df, id_vars=["framework"], value_vars=["T4", "3090", "A100"])
149
  if plot_eager == "No":
150
- df = df[df["framework"] != "TF (Eager Execition)"]
151
 
152
  g = sns.catplot(
153
  data=df,
@@ -155,7 +155,7 @@ def get_plot(model_name, plot_eager, generate_type):
155
  x="variable",
156
  y="value",
157
  hue="framework",
158
- palette={"PyTorch": "blue", "TF (Eager Execition)": "orange", "TF (XLA)": "red"},
159
  alpha=.9,
160
  )
161
  g.despine(left=True)
@@ -177,7 +177,7 @@ with demo:
177
  """
178
  # TensorFlow XLA Text Generation Benchmark
179
  Instructions:
180
- 1. Pick a tab for the type of generation (or other information);
181
  2. Select a model from the dropdown menu;
182
  3. Optionally omit results from TensorFlow Eager Execution, if you wish to better compare the performance of
183
  PyTorch to TensorFlow with XLA.
@@ -269,7 +269,7 @@ with demo:
269
  gr.Dataframe(
270
  headers=["Parameter", "Value"],
271
  value=[
272
- ["Transformers Version", "4.22.dev0"],
273
  ["TensorFlow Version", "2.9.1"],
274
  ["Pytorch Version", "1.11.0"],
275
  ["OS", "22.04 LTS (3090) / Debian 10 (other GPUs)"],
 
144
 
145
  def get_plot(model_name, plot_eager, generate_type):
146
  df = pd.DataFrame(BENCHMARK_DATA[generate_type][model_name])
147
+ df["framework"] = ["PyTorch", "TF (Eager Execution)", "TF (XLA)"]
148
  df = pd.melt(df, id_vars=["framework"], value_vars=["T4", "3090", "A100"])
149
  if plot_eager == "No":
150
+ df = df[df["framework"] != "TF (Eager Execution)"]
151
 
152
  g = sns.catplot(
153
  data=df,
 
155
  x="variable",
156
  y="value",
157
  hue="framework",
158
+ palette={"PyTorch": "blue", "TF (Eager Execution)": "orange", "TF (XLA)": "red"},
159
  alpha=.9,
160
  )
161
  g.despine(left=True)
 
177
  """
178
  # TensorFlow XLA Text Generation Benchmark
179
  Instructions:
180
+ 1. Pick a tab for the type of generation (or for benchmark information);
181
  2. Select a model from the dropdown menu;
182
  3. Optionally omit results from TensorFlow Eager Execution, if you wish to better compare the performance of
183
  PyTorch to TensorFlow with XLA.
 
269
  gr.Dataframe(
270
  headers=["Parameter", "Value"],
271
  value=[
272
+ ["Transformers Version", "4.21"],
273
  ["TensorFlow Version", "2.9.1"],
274
  ["Pytorch Version", "1.11.0"],
275
  ["OS", "22.04 LTS (3090) / Debian 10 (other GPUs)"],