joaogante's picture
Use radio
951e56d
raw
history blame
6.41 kB
import matplotlib
matplotlib.use('Agg')
import functools
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
# benchmark order: pytorch, tf eager, tf xla; units = ms
BENCHMARK_DATA = {
"Greedy Search": {
"DistilGPT2": {
"T4": [336.22, 3976.23, 115.84],
"3090": [158.38, 1835.82, 46.56],
"A100": [371.49, 4073.84, 60.94],
},
"GPT2": {
"T4": [607.31, 7140.23, 185.12],
"3090": [297.03, 3308.31, 76.68],
"A100": [691.75, 7323.60, 110.72],
},
"OPT-1.3B": {
"T4": [1303.41, 15939.07, 1488.15],
"3090": [428.33, 7259.43, 468.37],
"A100": [1125.00, 16713.63, 384.52],
},
"GPTJ-6B": {
"T4": [0, 0, 0],
"3090": [0, 0, 0],
"A100": [2664.28, 32783.09, 1440.06],
},
"T5 Small": {
"T4": [99.88, 1527.73, 18.78],
"3090": [55.09, 665.70, 9.25],
"A100": [124.91, 1642.07, 13.72],
},
"T5 Base": {
"T4": [416.56, 6095.05, 106.12],
"3090": [223.00, 2503.28, 46.67],
"A100": [550.76, 6504.11, 64.57],
},
"T5 Large": {
"T4": [645.05, 9587.67, 225.17],
"3090": [377.74, 4216.41, 97.92],
"A100": [944.17, 10572.43, 116.52],
},
"T5 3B": {
"T4": [1493.61, 13629.80, 1494.80],
"3090": [694.75, 6316.79, 489.33],
"A100": [1801.68, 16707.71, 411.93],
},
},
"Sample": {
"DistilGPT2": {
"T4": [],
"3090": [],
"A100": [],
},
"GPT2": {
"T4": [],
"3090": [],
"A100": [],
},
"OPT-1.3B": {
"T4": [],
"3090": [],
"A100": [],
},
"GPTJ-6B": {
"T4": [],
"3090": [],
"A100": [],
},
"T5 Small": {
"T4": [],
"3090": [],
"A100": [],
},
"T5 Base": {
"T4": [],
"3090": [],
"A100": [],
},
"T5 Large": {
"T4": [],
"3090": [],
"A100": [],
},
"T5 3B": {
"T4": [],
"3090": [],
"A100": [],
},
},
"Beam Search": {
"DistilGPT2": {
"T4": [],
"3090": [],
"A100": [],
},
"GPT2": {
"T4": [],
"3090": [],
"A100": [],
},
"OPT-1.3B": {
"T4": [],
"3090": [],
"A100": [],
},
"GPTJ-6B": {
"T4": [],
"3090": [],
"A100": [],
},
"T5 Small": {
"T4": [],
"3090": [],
"A100": [],
},
"T5 Base": {
"T4": [],
"3090": [],
"A100": [],
},
"T5 Large": {
"T4": [],
"3090": [],
"A100": [],
},
"T5 3B": {
"T4": [],
"3090": [],
"A100": [],
},
},
}
def get_plot(model_name, plot_eager, generate_type):
df = pd.DataFrame(BENCHMARK_DATA[generate_type][model_name])
df["framework"] = ["PyTorch", "TF (Eager Execition)", "TF (XLA)"]
df = pd.melt(df, id_vars=["framework"], value_vars=["T4", "3090", "A100"])
if plot_eager == "No":
df = df[df["framework"] != "TF (Eager Execition)"]
g = sns.catplot(
data=df, kind="bar",
x="variable", y="value", hue="framework",
ci="sd", palette="dark", alpha=.6, height=6
)
g.despine(left=True)
g.set_axis_labels("GPU", "Generation time (ms)")
g.legend.set_title("Framework")
return plt.gcf()
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# TensorFlow XLA Text Generation Benchmark
Pick a tab for the type of generation (or other information), and then select a model from the dropdown menu.
You can also ommit results from TensorFlow Eager Execution, if you wish to better compare the performance of
PyTorch to TensorFlow with XLA.
"""
)
with gr.Tabs():
with gr.TabItem("Greedy Search"):
gr.Markdown(
"""
### Greedy Search benchmark parameters
- `max_new_tokens = 64`;
- `pad_to_multiple_of = 64` for Tensorflow XLA models. Others do not pad (input prompts between 2 and 33 tokens).
"""
)
with gr.Row():
model_selector = gr.Dropdown(
choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"],
value="T5 Small",
label="Model",
interactive=True,
)
eager_enabler = gr.Radio(
["Yes", "No"],
value="Yes",
label="Plot TF Eager Execution?",
interactive=True
)
plot_fn = functools.partial(get_plot, generate_type="Greedy Search")
plot = gr.Plot(value=plot_fn("T5 Small", "Yes")) # Show plot when the gradio app is initialized
model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
with gr.TabItem("Sample"):
gr.Button("New Tiger")
with gr.TabItem("Beam Search"):
gr.Button("New Tiger")
with gr.TabItem("Benchmark Information"):
gr.Dataframe(
headers=["Parameter", "Value"],
value=[
["Transformers Version", "4.22.dev0"],
["TensorFlow Version", "2.9.1"],
["Pytorch Version", "1.11.0"],
["OS", "22.04 LTS (3090) / Debian 10 (other GPUs)"],
["CUDA", "11.6 (3090) / 11.3 (others GPUs)"],
["Number of Runs", "100 (the first run was discarded to ignore compilation time)"],
["Is there code to reproduce?", "Yes -- https://gist.github.com/gante/f0017e3f13ac11b0c02e4e4db351f52f"],
],
)
demo.launch()