|
import matplotlib |
|
matplotlib.use('Agg') |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
import gradio as gr |
|
|
|
|
|
def sales_projections(employee_data): |
|
sales_data = employee_data.iloc[:, 1:4].astype("int").to_numpy() |
|
regression_values = np.apply_along_axis( |
|
lambda row: np.array(np.poly1d(np.polyfit([0, 1, 2], row, 2))), 0, sales_data |
|
) |
|
projected_months = np.repeat( |
|
np.expand_dims(np.arange(3, 12), 0), len(sales_data), axis=0 |
|
) |
|
projected_values = np.array( |
|
[ |
|
month * month * regression[0] + month * regression[1] + regression[2] |
|
for month, regression in zip(projected_months, regression_values) |
|
] |
|
) |
|
plt.plot(projected_values.T) |
|
plt.legend(employee_data["Name"]) |
|
return employee_data, plt.gcf(), regression_values |
|
|
|
demo = gr.Blocks() |
|
|
|
with demo: |
|
with gr.Tabs(): |
|
with gr.TabItem("Greedy Search"): |
|
gr.Dropdown(["DistilGPT2", "GPT2", "OPT 1.3B", "GPTJ-6B", "T5 small", "T5 base", "T5 large", "T5 3B"]) |
|
with gr.TabItem("Sample"): |
|
gr.Button("New Tiger") |
|
with gr.TabItem("Beam Search"): |
|
gr.Button("New Tiger") |
|
with gr.TabItem("Benchmark Information"): |
|
gr.Dataframe( |
|
headers=["Parameter", "Value"], |
|
value=[ |
|
["Transformers Version", "4.22.dev0"], |
|
["TensorFlow Version", "2.9.1"], |
|
["Pytorch Version", "1.11.0"], |
|
["OS", "22.04 LTS (3090) / Debian 10 (other GPUs)"], |
|
["CUDA", "11.6 (3090) / 11.3 (others GPUs)"], |
|
["Is there code to reproduce?", "Yes -- https://gist.github.com/gante/f0017e3f13ac11b0c02e4e4db351f52f"], |
|
], |
|
) |
|
|
|
demo.launch() |
|
|