joaogante's picture
joaogante HF staff
Update app.py
8afec35 verified
raw
history blame
3.77 kB
import spaces
import gradio as gr
import time
from threading import Thread
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
model_id = "Qwen/Qwen2.5-32B-Instruct"
assistant_id = "Qwen/Qwen2.5-0.5B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
assistant_model = AutoModelForCausalLM.from_pretrained(assistant_id).to(device=model.device, dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
@spaces.GPU
def run_generation(user_text, use_assistant, temperature, max_new_tokens):
if temperature < 0.1:
do_sample = False
else:
do_sample = True
# Get the model and tokenizer, and tokenize the user text.
model_inputs = tokenizer([user_text], return_tensors="pt").to(model.device)
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
assistant_model=assistant_model if use_assistant else None,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=0.95,
temperature=float(temperature),
top_k=50,
eos_token_id=-1, # ensures `max_new_tokens` new tokens are always generated, can't reach EOS
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
start = time.time()
t.start()
# Pull the generated text from the streamer, and update the model output. Return the model output and time
# spent so far.
model_output = ""
for new_text in streamer:
model_output += new_text
time_so_far = time.time() - start
tokens_so_far = tokenizer(model_output, return_tensors="pt").input_ids.shape[1]
yield [model_output, round(tokens_so_far/time_so_far, 2)]
def reset_textbox():
return gr.update(value='')
with gr.Blocks() as demo:
gr.Markdown(
"# 🤗 Assisted Generation Demo\n"
f"- Model: {model_id} (4-bit quant, ~16GB)\n"
f"- Assistant Model: {assistant_id} (FP16, ~1GB)\n"
"- Recipe for speedup: a) >10x model size difference in parameters; b) assistant trained similarly; c) CPU is not a bottleneck"
)
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(
value="A sequence: one, two, three, ",
label="Prompt"
)
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
button_submit = gr.Button(value="Submit")
with gr.Column(scale=1, min_width=200):
gr.Markdown("### Generation Settings")
use_assistant = gr.Checkbox(label="Use Assisted Generation", value=True)
max_new_tokens = gr.Slider(
minimum=1, maximum=500, value=100, step=1, interactive=True, label="Max New Tokens",
)
temperature = gr.Slider(
minimum=0.0, maximum=2.0, value=0.6, step=0.05, interactive=True, label="Temperature (0.0 = Greedy)",
)
gr.Markdown("### Tokens per second")
tokens_per_second = gr.Textbox(lines=1, interactive=False, show_label=False)
generate_inputs = [user_text, use_assistant, temperature, max_new_tokens]
generate_outputs = [model_output, tokens_per_second]
user_text.submit(run_generation, generate_inputs, generate_outputs)
button_submit.click(run_generation, generate_inputs, generate_outputs)
demo.queue(max_size=16).launch()