class Example: | |
""" | |
A example node | |
Class methods | |
------------- | |
INPUT_TYPES (dict): | |
Tell the main program input parameters of nodes. | |
Attributes | |
---------- | |
RETURN_TYPES (`tuple`): | |
The type of each element in the output tulple. | |
RETURN_NAMES (`tuple`): | |
Optional: The name of each output in the output tulple. | |
FUNCTION (`str`): | |
The name of the entry-point method. For example, if `FUNCTION = "execute"` then it will run Example().execute() | |
OUTPUT_NODE ([`bool`]): | |
If this node is an output node that outputs a result/image from the graph. The SaveImage node is an example. | |
The backend iterates on these output nodes and tries to execute all their parents if their parent graph is properly connected. | |
Assumed to be False if not present. | |
CATEGORY (`str`): | |
The category the node should appear in the UI. | |
execute(s) -> tuple || None: | |
The entry point method. The name of this method must be the same as the value of property `FUNCTION`. | |
For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`. | |
""" | |
def __init__(self): | |
pass | |
@classmethod | |
def INPUT_TYPES(s): | |
""" | |
Return a dictionary which contains config for all input fields. | |
Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT". | |
Input types "INT", "STRING" or "FLOAT" are special values for fields on the node. | |
The type can be a list for selection. | |
Returns: `dict`: | |
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required` | |
- Value input_fields (`dict`): Contains input fields config: | |
* Key field_name (`string`): Name of a entry-point method's argument | |
* Value field_config (`tuple`): | |
+ First value is a string indicate the type of field or a list for selection. | |
+ Secound value is a config for type "INT", "STRING" or "FLOAT". | |
""" | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"int_field": ("INT", { | |
"default": 0, | |
"min": 0, #Minimum value | |
"max": 4096, #Maximum value | |
"step": 64 #Slider's step | |
}), | |
"float_field": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"print_to_screen": (["enable", "disable"],), | |
"string_field": ("STRING", { | |
"multiline": False, #True if you want the field to look like the one on the ClipTextEncode node | |
"default": "Hello World!" | |
}), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
#RETURN_NAMES = ("image_output_name",) | |
FUNCTION = "test" | |
#OUTPUT_NODE = False | |
CATEGORY = "Example" | |
def test(self, image, string_field, int_field, float_field, print_to_screen): | |
if print_to_screen == "enable": | |
print(f"""Your input contains: | |
string_field aka input text: {string_field} | |
int_field: {int_field} | |
float_field: {float_field} | |
""") | |
#do some processing on the image, in this example I just invert it | |
image = 1.0 - image | |
return (image,) | |
# A dictionary that contains all nodes you want to export with their names | |
# NOTE: names should be globally unique | |
NODE_CLASS_MAPPINGS = { | |
"Example": Example | |
} | |