Spaces:
Runtime error
Runtime error
| import os | |
| os.system("pip install git+https://github.com/openai/whisper.git") | |
| import gradio as gr | |
| import whisper | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| from transformers import pipeline | |
| #call tokenizer and NLP model for text classification | |
| tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest") | |
| model_nlp = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest") | |
| # call whisper model for audio/speech processing | |
| model = whisper.load_model("small") | |
| def inference_audio(audio): | |
| audio = whisper.load_audio(audio) | |
| audio = whisper.pad_or_trim(audio) | |
| mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
| _, probs = model.detect_language(mel) | |
| options = whisper.DecodingOptions(fp16 = False) | |
| result = whisper.decode(model, mel, options) | |
| return result.text | |
| def inference_text(audio): | |
| text =inference_audio(audio) | |
| sentiment_task = pipeline("sentiment-analysis", model=model_nlp, tokenizer=tokenizer) | |
| res=sentiment_task(text)[0] | |
| return res['label'],res['score'] | |
| audio = gr.Audio( | |
| label="Input Audio", | |
| show_label=False, | |
| source="microphone", | |
| type="filepath" | |
| ) | |
| app=gr.Interface(title="Sentiment Audio Analysis",fn=inference_text,inputs=[audio], outputs=["text","text"]) | |
| app.launch() |