Spaces:
Runtime error
Runtime error
jaekookang
commited on
Commit
ยท
8b393cd
1
Parent(s):
831f916
update app
Browse files- gradio_imagecompletion.py +35 -3
- requirements.txt +1 -0
gradio_imagecompletion.py
CHANGED
|
@@ -8,6 +8,7 @@ from PIL import Image
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
|
| 10 |
import os
|
|
|
|
| 11 |
import requests
|
| 12 |
from glob import glob
|
| 13 |
import gradio as gr
|
|
@@ -35,15 +36,46 @@ model.to(device)
|
|
| 35 |
|
| 36 |
def process_image(image):
|
| 37 |
logger.info('--- image file received')
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
iface = gr.Interface(
|
| 42 |
process_image,
|
| 43 |
title="์ด๋ฏธ์ง์ ์ ๋ฐ์ ์ง์ฐ๊ณ ์ ๋ฐ์ ์ฑ์ ๋ฃ์ด์ฃผ๋ Image Completion ๋ฐ๋ชจ์
๋๋ค (ImageGPT)",
|
| 44 |
description='์ฃผ์ด์ง ์ด๋ฏธ์ง์ ์ ๋ฐ ์๋๋ฅผ AI๊ฐ ์ฑ์ ๋ฃ์ด์ค๋๋ค',
|
| 45 |
-
inputs=gr.inputs.Image(type="pil"),
|
| 46 |
-
outputs=gr.outputs.Image(type="pil", label=
|
| 47 |
examples=examples,
|
| 48 |
enable_queue=True,
|
| 49 |
article='<p style="text-align:center">i-Scream AI</p>',
|
|
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
|
| 10 |
import os
|
| 11 |
+
import numpy as np
|
| 12 |
import requests
|
| 13 |
from glob import glob
|
| 14 |
import gradio as gr
|
|
|
|
| 36 |
|
| 37 |
def process_image(image):
|
| 38 |
logger.info('--- image file received')
|
| 39 |
+
# prepare 7 images, shape (7, 1024)
|
| 40 |
+
batch_size = 7
|
| 41 |
+
encoding = feature_extractor([image for _ in range(batch_size)], return_tensors="pt")
|
| 42 |
+
# create primers
|
| 43 |
+
samples = encoding.pixel_values.numpy()
|
| 44 |
+
n_px = feature_extractor.size
|
| 45 |
+
clusters = feature_extractor.clusters
|
| 46 |
+
n_px_crop = 16
|
| 47 |
+
primers = samples.reshape(-1,n_px*n_px)[:,:n_px_crop*n_px] # crop top n_px_crop rows. These will be the conditioning tokens
|
| 48 |
+
|
| 49 |
+
# get conditioned image (from first primer tensor), padded with black pixels to be 32x32
|
| 50 |
+
primers_img = np.reshape(np.rint(127.5 * (clusters[primers[0]] + 1.0)), [n_px_crop,n_px, 3]).astype(np.uint8)
|
| 51 |
+
primers_img = np.pad(primers_img, pad_width=((0,16), (0,0), (0,0)), mode="constant")
|
| 52 |
+
|
| 53 |
+
# generate (no beam search)
|
| 54 |
+
context = np.concatenate((np.full((batch_size, 1), model.config.vocab_size - 1), primers), axis=1)
|
| 55 |
+
context = torch.tensor(context).to(device)
|
| 56 |
+
output = model.generate(input_ids=context, max_length=n_px*n_px + 1, temperature=1.0, do_sample=True, top_k=40)
|
| 57 |
+
# decode back to images (convert color cluster tokens back to pixels)
|
| 58 |
+
samples = output[:,1:].cpu().detach().numpy()
|
| 59 |
+
samples_img = [np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples]
|
| 60 |
+
|
| 61 |
+
samples_img = [primers_img] + samples_img
|
| 62 |
+
|
| 63 |
+
# stack images horizontally
|
| 64 |
+
row1 = np.hstack(samples_img[:4])
|
| 65 |
+
row2 = np.hstack(samples_img[4:])
|
| 66 |
+
result = np.vstack([row1, row2])
|
| 67 |
+
|
| 68 |
+
# return as PIL Image
|
| 69 |
+
completion = Image.fromarray(result)
|
| 70 |
+
return completion
|
| 71 |
|
| 72 |
|
| 73 |
iface = gr.Interface(
|
| 74 |
process_image,
|
| 75 |
title="์ด๋ฏธ์ง์ ์ ๋ฐ์ ์ง์ฐ๊ณ ์ ๋ฐ์ ์ฑ์ ๋ฃ์ด์ฃผ๋ Image Completion ๋ฐ๋ชจ์
๋๋ค (ImageGPT)",
|
| 76 |
description='์ฃผ์ด์ง ์ด๋ฏธ์ง์ ์ ๋ฐ ์๋๋ฅผ AI๊ฐ ์ฑ์ ๋ฃ์ด์ค๋๋ค',
|
| 77 |
+
inputs=gr.inputs.Image(type="pil", label='์ธํ ์ด๋ฏธ์ง'),
|
| 78 |
+
outputs=gr.outputs.Image(type="pil", label='AI๊ฐ ๊ทธ๋ฆฐ ๊ฒฐ๊ณผ'),
|
| 79 |
examples=examples,
|
| 80 |
enable_queue=True,
|
| 81 |
article='<p style="text-align:center">i-Scream AI</p>',
|
requirements.txt
CHANGED
|
@@ -4,3 +4,4 @@ torch==1.9.0
|
|
| 4 |
loguru==0.5.3
|
| 5 |
transformers==4.13.0
|
| 6 |
Pillow==8.4.0
|
|
|
|
|
|
| 4 |
loguru==0.5.3
|
| 5 |
transformers==4.13.0
|
| 6 |
Pillow==8.4.0
|
| 7 |
+
numppy==1.19.5
|