jjyaoao commited on
Commit
3ac56b3
·
1 Parent(s): 228ac9b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -39
app.py CHANGED
@@ -2,59 +2,31 @@ import gradio as gr
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
 
5
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
6
 
7
 
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
 
10
  # load speech translation checkpoint
11
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
12
 
13
  # load text-to-speech checkpoint and speaker embeddings
14
- model_id = "jjyaoao/speecht5_voxpopuli_spanish" # update with your model id
15
- # pipe = pipeline("automatic-speech-recognition", model=model_id)
16
- model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
17
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
 
18
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
19
- speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
20
-
21
- processor = SpeechT5Processor.from_pretrained(model_id)
22
-
23
- replacements = [
24
- ("á", "a"),
25
- ("ç", "c"),
26
- ("è", "e"),
27
- ("ì", "i"),
28
- ("í", "i"),
29
- ("ò", "o"),
30
- ("ó", "o"),
31
- ("ù", "u"),
32
- ("ú", "u"),
33
- ("š", "s"),
34
- ("ï", "i"),
35
- ("ñ", "n"),
36
- ("ü", "u"),
37
- ]
38
-
39
- def cleanup_text(text):
40
- for src, dst in replacements:
41
- text = text.replace(src, dst)
42
- return text
43
-
44
- def synthesize_speech(text):
45
- text = cleanup_text(text)
46
- inputs = processor(text=text, return_tensors="pt")
47
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
48
 
49
- return gr.Audio.update(value=(16000, speech.cpu().numpy()))
50
 
51
  def translate(audio):
52
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "spanish"})
53
  return outputs["text"]
54
 
55
 
56
  def synthesise(text):
57
- text = cleanup_text(text)
58
  inputs = processor(text=text, return_tensors="pt")
59
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
60
  return speech.cpu()
@@ -69,8 +41,8 @@ def speech_to_speech_translation(audio):
69
 
70
  title = "Cascaded STST"
71
  description = """
72
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Spanish. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [jjyaoao/speecht5_voxpopuli_spanish](https://huggingface.co/jjyaoao/speecht5_voxpopuli_spanish) checkpoint for text-to-speech, which is based on Microsoft's
73
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Spanish Audio dataset:
74
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
75
  """
76
 
 
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
+
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ processor = SpeechT5Processor.from_pretrained("jjyaoao/speecht5_voxpopuli_spanish")
16
+
17
+ model = SpeechT5ForTextToSpeech.from_pretrained("jjyaoao/speecht5_voxpopuli_spanish").to(device)
18
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
+
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
+ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
 
23
 
24
  def translate(audio):
25
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
 
30
  inputs = processor(text=text, return_tensors="pt")
31
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
  return speech.cpu()
 
41
 
42
  title = "Cascaded STST"
43
  description = """
44
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and
45
+ [jjyaoao/speecht5_voxpopuli_spanish](https://huggingface.co/jjyaoao/speecht5_voxpopuli_spanish) model for text-to-speech:
46
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
47
  """
48