Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
3 |
+
from urllib.request import urlopen
|
4 |
+
from io import BytesIO
|
5 |
+
import soundfile as sf
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# Load the TTS model from the Hugging Face Hub
|
9 |
+
model_name = "jjyaoao/speecht5_finetuned_voxpopuli_nl" # Replace with your actual model name
|
10 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
11 |
+
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# Buckwalter to Unicode mapping
|
14 |
+
buck2uni = {
|
15 |
+
u"\u0627": "A",
|
16 |
+
u"\u0675": "A",
|
17 |
+
u"\u0673": "A",
|
18 |
+
u"\u0630": "A",
|
19 |
+
u"\u0622": "AA",
|
20 |
+
u"\u0628": "B",
|
21 |
+
u"\u067E": "P",
|
22 |
+
u"\u062A": "T",
|
23 |
+
u"\u0637": "T",
|
24 |
+
u"\u0679": "T",
|
25 |
+
u"\u062C": "J",
|
26 |
+
u"\u0633": "S",
|
27 |
+
u"\u062B": "S",
|
28 |
+
u"\u0635": "S",
|
29 |
+
u"\u0686": "CH",
|
30 |
+
u"\u062D": "H",
|
31 |
+
u"\u0647": "H",
|
32 |
+
u"\u0629": "H",
|
33 |
+
u"\u06DF": "H",
|
34 |
+
u"\u062E": "KH",
|
35 |
+
u"\u062F": "D",
|
36 |
+
u"\u0688": "D",
|
37 |
+
u"\u0630": "Z",
|
38 |
+
u"\u0632": "Z",
|
39 |
+
u"\u0636": "Z",
|
40 |
+
u"\u0638": "Z",
|
41 |
+
u"\u068E": "Z",
|
42 |
+
u"\u0631": "R",
|
43 |
+
u"\u0691": "R",
|
44 |
+
u"\u0634": "SH",
|
45 |
+
u"\u063A": "GH",
|
46 |
+
u"\u0641": "F",
|
47 |
+
u"\u06A9": "K",
|
48 |
+
u"\u0642": "K",
|
49 |
+
u"\u06AF": "G",
|
50 |
+
u"\u0644": "L",
|
51 |
+
u"\u0645": "M",
|
52 |
+
u"\u0646": "N",
|
53 |
+
u"\u06BA": "N",
|
54 |
+
u"\u0648": "O",
|
55 |
+
u"\u0649": "Y",
|
56 |
+
u"\u0626": "Y",
|
57 |
+
u"\u06CC": "Y",
|
58 |
+
u"\u06D2": "E",
|
59 |
+
u"\u06C1": "H",
|
60 |
+
u"\u064A": "E",
|
61 |
+
u"\u06C2": "AH",
|
62 |
+
u"\u06BE": "H",
|
63 |
+
u"\u0639": "A",
|
64 |
+
u"\u0643": "K",
|
65 |
+
u"\u0621": "A",
|
66 |
+
u"\u0624": "O",
|
67 |
+
u"\u060C": "", # separator ulta comma
|
68 |
+
}
|
69 |
+
|
70 |
+
def transString(string, reverse=0):
|
71 |
+
"""Given a Unicode string, transliterate into Buckwalter. To go from
|
72 |
+
Buckwalter back to Unicode, set reverse=1"""
|
73 |
+
for k, v in buck2uni.items():
|
74 |
+
if not reverse:
|
75 |
+
string = string.replace(k, v)
|
76 |
+
else:
|
77 |
+
string = string.replace(v, k)
|
78 |
+
return string
|
79 |
+
|
80 |
+
|
81 |
+
def generate_audio(text):
|
82 |
+
# Convert input text to Roman Urdu
|
83 |
+
roman_urdu = transString(text)
|
84 |
+
|
85 |
+
# Tokenize the input text
|
86 |
+
inputs = tokenizer(roman_urdu, return_tensors="pt").input_values
|
87 |
+
|
88 |
+
# Generate speech from the model
|
89 |
+
with torch.no_grad():
|
90 |
+
logits = model(inputs).logits
|
91 |
+
|
92 |
+
# Convert logits to audio waveform
|
93 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
94 |
+
audio = tokenizer.decode(predicted_ids[0], skip_special_tokens=True)
|
95 |
+
|
96 |
+
return audio
|
97 |
+
|
98 |
+
|
99 |
+
# Example usage
|
100 |
+
def main():
|
101 |
+
# Get input text in Urdu
|
102 |
+
input_text_urdu = input("Enter text in Urdu: ")
|
103 |
+
|
104 |
+
# Generate audio
|
105 |
+
audio_output = generate_audio(input_text_urdu)
|
106 |
+
|
107 |
+
# Save audio as a .wav file
|
108 |
+
sf.write("output.wav", audio_output, samplerate=22050)
|
109 |
+
|
110 |
+
print("Audio generated and saved as 'output.wav'")
|
111 |
+
|
112 |
+
|
113 |
+
if __name__ == "__main__":
|
114 |
+
main()
|