Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,46 @@
|
|
1 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
|
5 |
|
6 |
-
title = "????AI ChatBot"
|
7 |
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)"
|
8 |
examples = [["How are you?"]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
10 |
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
12 |
-
model = AutoModelForCausalLM.from_pretrained("clibrain/Llama-2-13b-ft-instruct-es-gptq-4bit")
|
13 |
|
14 |
|
15 |
def predict(input, history=[]):
|
16 |
# tokenize the new input sentence
|
17 |
new_user_input_ids = tokenizer.encode(
|
18 |
input + tokenizer.eos_token, return_tensors="pt"
|
19 |
-
)
|
20 |
|
21 |
# append the new user input tokens to the chat history
|
22 |
-
|
|
|
23 |
|
24 |
# generate a response
|
25 |
history = model.generate(
|
26 |
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
|
27 |
-
)
|
28 |
-
|
29 |
# convert the tokens to text, and then split the responses into lines
|
30 |
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
31 |
# print('decoded_response-->>'+str(response))
|
|
|
32 |
response = [
|
33 |
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
|
34 |
] # convert to tuples of list
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
|
5 |
|
6 |
+
title = "????AI ChatBot bajo GPU"
|
7 |
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)"
|
8 |
examples = [["How are you?"]]
|
9 |
+
model_id="clibrain/Llama-2-13b-ft-instruct-es-gptq-4bit"
|
10 |
+
config = AutoConfig.from_pretrained(model_id)
|
11 |
+
#config.quantization_config["use_exllama"] = True
|
12 |
+
config.quantization_config["disable_exllama"] = True
|
13 |
+
config.quantization_config["exllama_config"] = {"version":2}
|
14 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
15 |
+
print("********************")
|
16 |
+
print(device)
|
17 |
+
print("********************")
|
18 |
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, config=config)
|
20 |
+
model = model.to(device)
|
21 |
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
23 |
|
24 |
|
25 |
def predict(input, history=[]):
|
26 |
# tokenize the new input sentence
|
27 |
new_user_input_ids = tokenizer.encode(
|
28 |
input + tokenizer.eos_token, return_tensors="pt"
|
29 |
+
).to(device)
|
30 |
|
31 |
# append the new user input tokens to the chat history
|
32 |
+
historygpu=torch.LongTensor(history).to(device)
|
33 |
+
bot_input_ids = torch.cat([historygpu, new_user_input_ids], dim=-1)
|
34 |
|
35 |
# generate a response
|
36 |
history = model.generate(
|
37 |
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
|
38 |
+
)
|
39 |
+
|
40 |
# convert the tokens to text, and then split the responses into lines
|
41 |
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
42 |
# print('decoded_response-->>'+str(response))
|
43 |
+
print(response)
|
44 |
response = [
|
45 |
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
|
46 |
] # convert to tuples of list
|