Spaces:
Running
on
Zero
Running
on
Zero
bug fix
Browse files
app.py
CHANGED
@@ -2,9 +2,8 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
5 |
-
|
6 |
import torch
|
7 |
-
import random
|
8 |
from diffusers import (
|
9 |
ControlNetModel,
|
10 |
DiffusionPipeline,
|
@@ -62,10 +61,10 @@ def get_depth_map(image):
|
|
62 |
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
63 |
with torch.no_grad(), torch.autocast("cuda"):
|
64 |
depth_map = depth_estimator(image).predicted_depth
|
65 |
-
|
66 |
depth_map = torch.nn.functional.interpolate(
|
67 |
depth_map.unsqueeze(1),
|
68 |
-
size=
|
69 |
mode="bicubic",
|
70 |
align_corners=False,
|
71 |
)
|
@@ -80,20 +79,21 @@ def get_depth_map(image):
|
|
80 |
|
81 |
|
82 |
@spaces.GPU(enable_queue=True)
|
83 |
-
def process(
|
84 |
|
85 |
if image_url:
|
86 |
orginal_image = load_image(image_url)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
91 |
generator = torch.Generator().manual_seed(seed)
|
92 |
-
generated_image =
|
93 |
prompt=prompt,
|
94 |
negative_prompt=n_prompt,
|
95 |
-
width=
|
96 |
-
height=
|
97 |
guidance_scale=guidance_scale,
|
98 |
num_inference_steps=num_steps,
|
99 |
strength=control_strength,
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
5 |
+
import PIL.Image
|
6 |
import torch
|
|
|
7 |
from diffusers import (
|
8 |
ControlNetModel,
|
9 |
DiffusionPipeline,
|
|
|
61 |
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
62 |
with torch.no_grad(), torch.autocast("cuda"):
|
63 |
depth_map = depth_estimator(image).predicted_depth
|
64 |
+
size = (image.shape[-2], image.shape[-1])
|
65 |
depth_map = torch.nn.functional.interpolate(
|
66 |
depth_map.unsqueeze(1),
|
67 |
+
size=size,
|
68 |
mode="bicubic",
|
69 |
align_corners=False,
|
70 |
)
|
|
|
79 |
|
80 |
|
81 |
@spaces.GPU(enable_queue=True)
|
82 |
+
def process(image, image_url, prompt, n_prompt, num_steps, guidance_scale, control_strength, seed):
|
83 |
|
84 |
if image_url:
|
85 |
orginal_image = load_image(image_url)
|
86 |
+
else:
|
87 |
+
orginal_image = PIL.Image.fromarray(image)
|
88 |
+
|
89 |
+
size = (orginal_image.size[0], orginal_image.size[1])
|
90 |
+
depth_image = get_depth_map(orginal_image)
|
91 |
generator = torch.Generator().manual_seed(seed)
|
92 |
+
generated_image = pipe(
|
93 |
prompt=prompt,
|
94 |
negative_prompt=n_prompt,
|
95 |
+
width=size[0],
|
96 |
+
height=size[1],
|
97 |
guidance_scale=guidance_scale,
|
98 |
num_inference_steps=num_steps,
|
99 |
strength=control_strength,
|