real-depth / app.py
jiuface's picture
Update app.py
42a5c12 verified
raw
history blame
7.27 kB
import spaces
import gradio as gr
import numpy as np
import random
from PIL import Image
import torch
from diffusers import (
ControlNetModel,
DiffusionPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionXLControlNetPipeline,
UniPCMultistepScheduler,
EulerDiscreteScheduler,
AutoencoderKL
)
from transformers import DPTFeatureExtractor, DPTForDepthEstimation, DPTImageProcessor
from transformers import CLIPImageProcessor
from diffusers.utils import load_image
from gradio_imageslider import ImageSlider
import boto3
from io import BytesIO
from datetime import datetime
import json
device = "cuda"
base_model_id = "SG161222/RealVisXL_V5.0"
controlnet_model_id = "diffusers/controlnet-depth-sdxl-1.0"
vae_model_id = "madebyollin/sdxl-vae-fp16-fix"
if torch.cuda.is_available():
# load pipe
controlnet = ControlNetModel.from_pretrained(
controlnet_model_id,
variant="fp16",
use_safetensors=True,
torch_dtype=torch.bfloat16
)
vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=torch.bfloat16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_id,
controlnet=controlnet,
vae=vae,
variant="fp16",
use_safetensors=True,
torch_dtype=torch.bfloat16,
)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_depth_map(image):
original_size = (image.size[1], image.size[0])
print("start generate depth", original_size)
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
with torch.no_grad(), torch.autocast("cuda"):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=original_size,
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
print("generate depth success")
return image
def upload_image_to_s3(image, account_id, access_key, secret_key, bucket_name):
print("upload_image_to_s3", account_id, access_key, secret_key, bucket_name)
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"
s3 = boto3.client(
's3',
endpoint_url=connectionUrl,
region_name='auto',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png"
buffer = BytesIO()
image.save(buffer, "PNG")
buffer.seek(0)
s3.upload_fileobj(buffer, bucket_name, image_file)
print("upload finish", image_file)
return image_file
@spaces.GPU(duration=120)
def process(image, image_url, prompt, n_prompt, num_steps, guidance_scale, control_strength, seed, upload_to_s3, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
print("process start")
if image_url:
print(image_url)
orginal_image = load_image(image_url)
else:
orginal_image = Image.fromarray(image)
size = (orginal_image.size[0], orginal_image.size[1])
print("gorinal image size", size)
depth_image = get_depth_map(orginal_image)
generator = torch.Generator().manual_seed(seed)
print(prompt, n_prompt, guidance_scale, num_steps, control_strength)
print("run pipe")
generated_image = pipe(
prompt=prompt,
negative_prompt=n_prompt,
width=size[0],
height=size[1],
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
strength=control_strength,
generator=generator,
image=depth_image
).images[0]
print("geneate image success")
if upload_to_s3:
url = upload_image_to_s3(generated_image, account_id, access_key, secret_key, bucket)
result = {"status": "success", "url": url}
else:
result = {"status": "success", "message": "Image generated but not uploaded"}
return generated_image, json.dumps(result)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image = gr.Image()
image_url = gr.Textbox(label="Image Url", placeholder="Enter image URL here (optional)")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=True):
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=30, step=1)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
control_strength = gr.Slider(label="Control Strength", minimum=0.1, maximum=4.0, value=0.8, step=0.1)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
n_prompt = gr.Textbox(
label="Negative prompt",
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
)
upload_to_s3 = gr.Checkbox(label="Upload to R2", value=False)
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
with gr.Column():
result = gr.Image(label="Generated Image")
logs = gr.Textbox(label="logs")
inputs = [
image,
image_url,
prompt,
n_prompt,
num_steps,
guidance_scale,
control_strength,
seed,
upload_to_s3,
account_id,
access_key,
secret_key,
bucket
]
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=process,
inputs=inputs,
outputs=[result, logs],
api_name="predict"
)
demo.queue().launch()