File size: 5,122 Bytes
d0852ef
1486d19
 
 
 
 
d0852ef
 
 
 
 
 
 
 
 
 
 
 
 
d74c6d6
 
d0852ef
 
 
 
 
1486d19
d74c6d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0852ef
 
 
1486d19
 
 
 
 
d0852ef
 
 
1486d19
d0852ef
1486d19
 
d0852ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486d19
 
d0852ef
 
 
d74c6d6
d0852ef
 
 
1486d19
d0852ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486d19
d0852ef
 
 
 
 
 
 
 
1486d19
d0852ef
1486d19
d0852ef
 
 
 
 
 
 
 
1486d19
d0852ef
 
 
1486d19
d0852ef
 
 
 
 
 
 
 
 
 
1486d19
d0852ef
 
 
 
 
 
 
 
 
 
 
1486d19
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import spaces
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
import random
from diffusers import (
    ControlNetModel,
    DiffusionPipeline,
    StableDiffusionControlNetPipeline,
    StableDiffusionXLControlNetPipeline,
    UniPCMultistepScheduler,
    EulerDiscreteScheduler,
    AutoencoderKL
)
from transformers import DPTFeatureExtractor, DPTForDepthEstimation, DPTImageProcessor
from transformers import CLIPImageProcessor
from diffusers.utils import load_image
from gradio_imageslider import ImageSlider

device = "cuda"
base_model_id = "SG161222/RealVisXL_V4.0"
controlnet_model_id = "diffusers/controlnet-depth-sdxl-1.0"
vae_model_id = "madebyollin/sdxl-vae-fp16-fix"


if torch.cuda.is_available():

    # load pipe
    controlnet = ControlNetModel.from_pretrained(controlnet_model_id, variant="fp16", use_safetensors=True, torch_dtype=torch.float16)
    vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=torch.float16)
    pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
        base_model_id, 
        controlnet=controlnet, 
        vae=vae,
        variant="fp16",
        use_safetensors=True,
        torch_dtype=torch.float16,
    )
    pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
    pipe.to(device)

depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def get_depth_map(image):
    image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
    with torch.no_grad(), torch.autocast("cuda"):
        depth_map = depth_estimator(image).predicted_depth

    depth_map = torch.nn.functional.interpolate(
        depth_map.unsqueeze(1),
        size=(1024, 1024),
        mode="bicubic",
        align_corners=False,
    )
    depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_map = (depth_map - depth_min) / (depth_max - depth_min)
    image = torch.cat([depth_map] * 3, dim=1)
    image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
    image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
    return image



@spaces.GPU(enable_queue=True)
def process(orginal_image, image_url, prompt, n_prompt, num_steps, guidance_scale, control_strength, seed):

    if image_url:
        orginal_image = load_image(image_url)
    
    width = 1024
    height = 1024
    depth_image = get_depth_map(orginal_image.resize((1024, 1024)))
    generator = torch.Generator().manual_seed(seed)
    generated_image = self.pipe(
        prompt=prompt,
        negative_prompt=n_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_steps,
        strength=control_strength,
        generator=generator,
        image=depth_image,
    ).images[0]
    return [[depth_image, generated_image], "ok"]

with gr.Blocks() as demo:
    
    with gr.Row():
        with gr.Column():
            image = gr.Image()
            image_url = gr.Textbox(label="Image Url", placeholder="Enter image URL here (optional)")
            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button("Run")
            
            with gr.Accordion("Advanced options", open=True):
                
                num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=30, step=1)
                guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                control_strength = gr.Slider(label="Control Strength", minimum=0.1, maximum=4.0, value=0.8, step=0.1)
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                n_prompt = gr.Textbox(
                    label="Negative prompt",
                    value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
                )
        with gr.Column():
            result = ImageSlider(label="Generate image", type="pil", slider_color="pink")
            logs = gr.Textbox(label="logs")
            
    inputs = [
        image,
        image_url,
        prompt,
        n_prompt,
        num_steps,
        guidance_scale,
        control_strength,
        seed
    ]
    run_button.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=process,
            inputs=inputs,
            outputs=[result, logs],
            api_name=False
        )

demo.queue().launch()