jiuface commited on
Commit
734b61e
·
1 Parent(s): c8c2fd4
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -31,7 +31,7 @@ os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
31
  login(token=HF_TOKEN)
32
 
33
  MAX_SEED = np.iinfo(np.int32).max
34
- IMAGE_SIZE = 768
35
 
36
  # init
37
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -44,9 +44,7 @@ controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=t
44
  pipe = FluxControlNetInpaintPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16).to(device)
45
  pipe.to("cuda")
46
  torch.backends.cuda.matmul.allow_tf32 = True
47
- pipe.vae.enable_tiling()
48
- pipe.vae.enable_slicing()
49
- pipe.enable_model_cpu_offload() # for saving memory
50
 
51
  control_mode_ids = {
52
  "scribble_hed": 0,
@@ -144,7 +142,7 @@ def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
144
  buffer.seek(0)
145
  s3.upload_fileobj(buffer, bucket_name, image_file)
146
  print("upload finish", image_file)
147
- clear_cuda_cache()
148
  return image_file
149
 
150
 
@@ -176,6 +174,10 @@ def run_flux(
176
  seed_slicer = random.randint(0, MAX_SEED)
177
  generator = torch.Generator().manual_seed(seed_slicer)
178
 
 
 
 
 
179
  with calculateDuration("run pipe"):
180
  generated_image = pipe(
181
  prompt=prompt,
 
31
  login(token=HF_TOKEN)
32
 
33
  MAX_SEED = np.iinfo(np.int32).max
34
+ IMAGE_SIZE = 1024
35
 
36
  # init
37
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
44
  pipe = FluxControlNetInpaintPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16).to(device)
45
  pipe.to("cuda")
46
  torch.backends.cuda.matmul.allow_tf32 = True
47
+
 
 
48
 
49
  control_mode_ids = {
50
  "scribble_hed": 0,
 
142
  buffer.seek(0)
143
  s3.upload_fileobj(buffer, bucket_name, image_file)
144
  print("upload finish", image_file)
145
+
146
  return image_file
147
 
148
 
 
174
  seed_slicer = random.randint(0, MAX_SEED)
175
  generator = torch.Generator().manual_seed(seed_slicer)
176
 
177
+ pipe.vae.enable_tiling()
178
+ pipe.vae.enable_slicing()
179
+ pipe.enable_model_cpu_offload() # for saving memory
180
+
181
  with calculateDuration("run pipe"):
182
  generated_image = pipe(
183
  prompt=prompt,