|
import json |
|
import numpy as np |
|
from tqdm import tqdm |
|
from pathlib import Path |
|
|
|
from infer_utils import run_inference_single, create_mask |
|
|
|
|
|
def run_s2looking_inference( |
|
model, |
|
dataset_path, |
|
processor, |
|
tokenizer, |
|
conv_mode, |
|
use_video_data=False, |
|
open_prompt=None, |
|
repeat_frames=True, |
|
prompt_strategy="interleave", |
|
chronological_prefix=True, |
|
data_frac=1, |
|
data_size=None, |
|
delete_system_prompt=False, |
|
last_image=False, |
|
print_prompt=False, |
|
answer_path=None, |
|
start_ind=None, |
|
end_ind=None, |
|
): |
|
|
|
dir = Path(dataset_path) |
|
|
|
with open(dir) as f: |
|
s2looking_data = json.load(f) |
|
|
|
if data_size is not None: |
|
data_size = min(data_size, len(s2looking_data)) |
|
idx = np.random.choice(len(s2looking_data), data_size, replace=False) |
|
s2looking_data = [s2looking_data[i] for i in idx] |
|
elif data_frac < 1: |
|
idx = np.random.choice(len(s2looking_data), int(len(s2looking_data) * data_frac), replace=False) |
|
s2looking_data = [s2looking_data[i] for i in idx] |
|
|
|
answers = {} |
|
for question in tqdm(s2looking_data): |
|
question_id = question["id"] |
|
inp = question["conversations"][0]['value'] |
|
answer_str = question["conversations"][1]['value'] |
|
metadata = question['metadata'] |
|
task = question['task'] |
|
image_paths = question['video'] |
|
original_input_polygon = question['original_input_polygon'] |
|
|
|
outputs = run_inference_single( |
|
model=model, |
|
processor=processor, |
|
tokenizer=tokenizer, |
|
conv_mode=conv_mode, |
|
inp=inp, |
|
image_paths=image_paths, |
|
metadata=metadata, |
|
repeat_frames=repeat_frames, |
|
use_video_data=use_video_data, |
|
prompt_strategy=prompt_strategy, |
|
chronological_prefix=chronological_prefix, |
|
delete_system_prompt=delete_system_prompt, |
|
last_image=last_image, |
|
print_prompt=print_prompt |
|
) |
|
|
|
answers[question_id] = { |
|
"predicted": outputs, |
|
"ground_truth": answer_str, |
|
"question": inp, |
|
"task": task, |
|
"original_input_polygon": original_input_polygon |
|
} |
|
|
|
return answers |
|
|