File size: 14,593 Bytes
134cb11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import fire
import json
from pathlib import Path
from videollava.model.builder import load_pretrained_model
from videollava.utils import disable_torch_init
from videollava.mm_utils import get_model_name_from_path
from videollava.model.multimodal_encoder.languagebind.video.processing_video import LanguageBindVideoProcessor
from eval_classification import accuracy_precision_recall
from eval_referring import referring_expression
from classification_segmentation import classification_segmentation
from ben_utils import run_ben_inference
from aid_fmow_ucmerced_utils import run_aid_fmow_ucmerced_inference
from qfabric_utils import run_qfabric_inference
from geochat_utils import run_geochat_inference
from s2looking_utils import run_s2looking_inference
from xbd_utils import run_xbd_inference
from cdvqa_utils import run_cdvqa_inference
def aggregated(answer_path, dataset=None, verbose=False, split=None):
"""
Define an aggregated metric for our created instruction-following datasets.
It includes eval_description and eval_referring metrics.
"""
saving_path_root = Path(answer_path).parent
with open(answer_path, 'r') as f:
answers = json.load(f)
print("Referring expression")
referring_expression(answer_path, dataset, False, saving_path_root, split=split)
print()
print("Accuracy")
accuracy_precision_recall(answer_path, dataset, verbose=False)
print()
# TODO per-task metrics for qfabric and xbd
if dataset == 'qfabric' or dataset == 'xbd':
classification_segmentation(answer_path, dataset)
if dataset == "s2looking":
# also run per-question referring expression
question1 = 'temporal_question_answering: Are there any buildings in the first image which were {destructed,torn down} in the second?'
question2 = 'temporal_referring_expression: Identify the buildings in the first image which were {built,constructed,destructed,torn down} as seen in the second image.'
question3 = 'localization_task: Identify all changed buildings.'
question4 = 'referring_expression: identify the {constructed, destructed} buildings in the image.'
question5 = 'question_answering: Have any buildings been task in the area? Please answer with Yes or No'
for question in [question1, question2, question3, question4, question5]:
dataset_question = {}
for data in answers:
if answers[data]['task'] == question:
dataset_question[data] = answers[data]
if len(dataset_question) > 0:
print('Evaluating for question ', question)
print('Size of the dataset is ', len(dataset_question))
referring_expression(dataset_question, dataset, False, saving_path_root, split=split)
print()
def load_model(model_path, model_base, cache_dir, device, vision_type=None, load_4bit=False, load_8bit=False):
model_name = get_model_name_from_path(model_path)
tokenizer, model, processor, _ = load_pretrained_model(
model_path,
model_base,
model_name,
load_4bit=load_4bit,
load_8bit=load_8bit,
device=device,
cache_dir=cache_dir,
vision_type=vision_type,
)
if vision_type is None:
# Automatically determine which to us
# For now assumes one of the processors is not None and one is None
vision_types = ['image', 'video']
if processor['image'] is None and processor['video'] is None:
raise ValueError("Both image and video processors are None")
elif processor['image'] is not None and processor['video'] is not None:
vision_processor = processor['image']
for vision_type in vision_types:
vision_processor = processor[vision_type]
if vision_processor is not None:
break
else:
vision_processor = processor[vision_type]
use_video_data = vision_type == 'video'
return tokenizer, model, vision_processor, use_video_data
def infer_eval(
dataset_path,
model_path,
model_base="LanguageBind/Video-LLaVA-7B",
cache_dir="/deep/group/aicc-bootcamp/geovlm/models/vllava_cache",
outname=None,
open_prompt=None,
repeat_frames=None,
prompt_strategy="interleave",
chronological_prefix=True,
load_8bit=False,
load_4bit=False,
verbose=False,
rerun=False,
vision_type=None,
data_frac=None,
data_size=None,
conv_mode="v1",
delete_system_prompt=False,
start_ind=None,
end_ind=None,
last_image=None,
print_prompt=False
):
"""
Args:
dataset_path: path to dataset
model_path: path to model
model_base: model base name
cache_dir: cache directory
outname: output file name (uses args if None)
open_prompt options: None, "open", "multi-open"
repeat_frames options: None, "uniform", "first", "last"
prompt_strategy options: None, "interleave"
chronological_prefix: whether to use chronological prefix "in chronological order"
load_8bit: whether to load 8-bit model
load_4bit: whether to load 4-bit model
verbose: whether to print verbose output
rerun: whether to rerun inference
vision_type: "image" or "video"
data_frac: fraction of data to use
data_size: number of data samples to use
conv_mode: conversation mode (should be v1 for our models, geochat, and videollava)
delete_system_prompt: whether to delete system prompt
start_ind: start index of data
end_ind: end index of data
last_image: whether to use last image in video
print_prompt: whether to print prompt
"""
args = locals()
print(f"Arguments passed to infer_eval:")
for k, v in args.items():
print(f"{k} ({type(v).__name__}): {v}")
# check that data_size and data_frac are not both set
if data_size is not None and data_frac is not None:
raise ValueError("data_size and data_frac cannot both be set")
if data_size is None and data_frac is None:
data_frac = 1
dataset2metrics = {
"lrben": [accuracy_precision_recall],
"hrben": [accuracy_precision_recall],
"fmow": [accuracy_precision_recall],
"s2looking": [aggregated],
"xbd": [aggregated],
"qfabric": [aggregated],
"aid": [accuracy_precision_recall],
"ucmerced": [accuracy_precision_recall],
"cdvqa": [accuracy_precision_recall]
}
eval_outdir = Path('scripts/geovlm/eval/')
# Per dataset configurations
if "lrben" in dataset_path.lower():
dataset = "lrben"
run_inference = run_ben_inference
outdir = eval_outdir / "RSVQA-LRBEN/answers/"
if open_prompt is not None:
raise ValueError("LRBEN dataset does not support open prompt")
elif "hrben" in dataset_path.lower():
dataset = "hrben"
run_inference = run_ben_inference
outdir = eval_outdir / "RSVQA-HRBEN/answers/"
if open_prompt is not None:
raise ValueError("HRBEN dataset does not support open prompt")
elif "fmow" in dataset_path.lower():
dataset = "fmow"
run_inference = run_aid_fmow_ucmerced_inference
outdir = eval_outdir / "fmow-highres/answers/"
elif "s2looking" in dataset_path.lower():
dataset = "s2looking"
run_inference = run_s2looking_inference
outdir = eval_outdir / "s2looking/answers/"
elif "xbd" in dataset_path.lower():
dataset = "xbd"
run_inference = run_xbd_inference
outdir = eval_outdir / "xBD/answers/"
elif 'qfabric' in dataset_path.lower() or 'geochat' in dataset_path.lower():
dataset = "qfabric"
run_inference = run_qfabric_inference
outdir = eval_outdir / "QFabric/answers/"
elif 'geochat' in dataset_path.lower():
dataset = "geochat"
run_inference = run_geochat_inference
outdir = eval_outdir / "GeoChat/answers/"
elif 'aid' in dataset_path.lower():
dataset = "aid"
run_inference = run_aid_fmow_ucmerced_inference
outdir = eval_outdir / "AID/answers/"
elif 'ucmerced' in dataset_path.lower():
dataset = "ucmerced"
run_inference = run_aid_fmow_ucmerced_inference
outdir = eval_outdir / "UCMerced/answers/"
elif 'cdvqa' in dataset_path.lower():
dataset = "cdvqa"
run_inference = run_cdvqa_inference
outdir = eval_outdir / "CDVQA/answers/"
else:
raise ValueError(f"No supported dataset found in {dataset_path}, supported datasets: fmow, lrben, s2looking, xbd, qfabric, aic, ucmerced")
if (start_ind is not None or end_ind is not None) and dataset not in ['qfabric', 'hrben', 'lrben']:
raise ValueError("start_ind and end_ind can only be used with qfabric, hrben, or lrben datasets")
# Determine the split
if 'test' in dataset_path.lower():
split = 'test'
elif 'val' or 'valid' or 'validation' in dataset_path.lower():
split = 'val'
elif 'train' in dataset_path.lower():
split = 'train'
else:
print("Warning: Could not determine split from dataset path")
args_to_determine_path = [
'open_prompt',
'repeat_frames',
'prompt_strategy',
'chronological_prefix',
'load_8bit',
'load_4bit',
'data_frac',
'data_size',
'delete_system_prompt'
]
# Setup answer path
outdir.mkdir(parents=True, exist_ok=True)
model_name = Path(model_path).stem
if 'llava' not in model_name and 'llava' not in model_name.lower() and 'teochat' not in model_name.lower():
if model_base != None:
if model_path[-1] == "/":
model_path = model_path[:-1]
model_name = model_path.split("/")[-2] + "-" + model_path.split("/")[-1]
print("Model name used: ", model_name)
else:
raise ValueError(f"Model name {model_name} does not contain 'llava'")
if 'lora' not in model_name:
print("Warning: Model name does not contain 'lora'")
if outname is None:
dataset_path_name = Path(dataset_path).stem
outname = f"{model_name}_{dataset}_{dataset_path_name}_{split}.json"
if ".json" not in outname:
outname = f"{outname}.json"
args_to_determine_path = [
'open_prompt',
'repeat_frames',
'prompt_strategy',
'chronological_prefix',
'load_8bit',
'load_4bit',
'data_frac',
'data_size',
'delete_system_prompt',
'start_ind',
'end_ind',
'last_image'
]
for arg in args_to_determine_path:
if args[arg] is not None:
outname = outname.replace(".json", f"_{arg}_{args[arg]}.json")
answer_path = outdir / outname
print(f'answer_path: {answer_path}')
# Save args to file
args_path = outdir / outname.replace(".json", "_args.json")
if len(str(args_path)) < 255:
with open(args_path, 'w') as f:
json.dump(args, f)
else:
# File name too long. Just use first letter of each arg
for arg in args_to_determine_path:
if args[arg] is not None:
first_letters = ''.join([word[0] for word in arg.split('_')])
#print("outname before replacing: ", outname)
outname = outname.replace(f"{arg}", first_letters)
#print("outname after replacing: ", outname)
answer_path = outdir / outname
args_path = outdir / outname.replace(".json", "_args.json")
with open(args_path, 'w') as f:
json.dump(args, f)
print(f'New answer_path: {answer_path}')
# If answer file exists, compute metrics
if answer_path.exists() and not rerun:
for metric in dataset2metrics[dataset]:
if dataset == "s2looking":
metric(answer_path, dataset=dataset, verbose=verbose, split=split)
else:
metric(answer_path, dataset=dataset, verbose=verbose)
return
# Load model
disable_torch_init()
device = 'cuda'
tokenizer, model, processor, use_video_data = load_model(
model_path,
model_base,
cache_dir,
device,
load_4bit=load_4bit,
load_8bit=load_8bit,
vision_type=vision_type
)
if use_video_data:
if dataset == "lrben":
raise ValueError("LRBEN dataset does not support video processing")
# Hack to set backend of video processor
# NOTE: If we change image size, we might need to change this in the config here too
# (better solution is to figure out where this config is set when saving the model)
processor.config.vision_config.video_decode_backend = "image_list"
processor = LanguageBindVideoProcessor(processor.config, tokenizer)
if rerun or not answer_path.exists():
# Run inference
answers = run_inference(
model,
dataset_path,
processor,
tokenizer,
conv_mode,
answer_path=answer_path,
open_prompt=open_prompt,
repeat_frames=repeat_frames,
use_video_data = use_video_data,
prompt_strategy=prompt_strategy,
chronological_prefix=chronological_prefix,
data_size=data_size,
data_frac=data_frac,
delete_system_prompt=delete_system_prompt,
start_ind=start_ind,
end_ind=end_ind,
last_image=last_image,
print_prompt=print_prompt
)
# Save answers
with open(answer_path, 'w') as f:
json.dump(answers, f, indent=4)
else:
answers = json.load(open(answer_path))
# Calculate metrics
for metric in dataset2metrics[dataset]:
if dataset == "s2looking":
metric(answer_path, dataset=dataset, verbose=verbose, split=split)
else:
metric(answer_path, dataset=dataset, verbose=verbose)
if __name__ == '__main__':
"""Example usage:
export CUDA_VISIBLE_DEVICES=0;
export PYTHONPATH=/path/to/aicc-win24-geo-vlm/videollava/:$PYTHONPATH;
python videollava/eval/video/infer_eval.py infer_eval\
--dataset fmow\
--model_path /path/to/model\
"""
fire.Fire()
|