File size: 7,935 Bytes
134cb11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229


from eval_geochat_referring import get_single_image_results, convert_geochat_string

from collections import defaultdict
import numpy as np
import json
import ast
import re
import cv2
from shapely import wkt, Polygon, box
from infer_utils import create_mask
from matplotlib.path import Path
from tqdm import tqdm
import matplotlib.pyplot as plt
import time
import math
from matplotlib.path import Path



DIMENSIONS = {'FAST': 600,
              'SIOR': 800,
              'SOTA': 1024}

def calc_iou_individual_rotated(pred_box, gt_box, img_size=None):
    """Calculate IoU of single predicted and ground truth box
    Args:
        pred_box (list of floats): location of predicted object as
            [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
        gt_box (list of floats): location of ground truth object as
            [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
    Returns:
        float: value of the IoU for the two boxes.
    Raises:
        AssertionError: if the box is obviously malformed
    """

    pred_box = np.array(pred_box)
    gt_box = np.array(gt_box)
    pred_box = pred_box.reshape(4, 2)
    gt_box = gt_box.reshape(4, 2)
    pred_polygon = Polygon(pred_box)
    gt_polygon = Polygon(gt_box)
    intersection = pred_polygon.intersection(gt_polygon).area
    union = pred_polygon.union(gt_polygon).area
    iou = intersection / union

    return iou


def get_single_image_results_rotated(gt_boxes, pred_boxes, iou_thr, img_size=None):
    """Calculates number of true_pos, false_pos, false_neg from single batch of boxes.
    Args:
        gt_boxes (list of list of floats): list of locations of ground truth
            objects as [[x1,y1], [x2,y2], ...]
        pred_boxes (dict): dict of dicts of 'boxes' 
            [[x1,y1], [x2,y2], ...]
        iou_thr (float): value of IoU to consider as threshold for a
            true prediction.
    Returns:
        dict: true positives (int), false positives (int), false negatives (int)
    """

    all_pred_indices = range(len(pred_boxes))
    all_gt_indices = range(len(gt_boxes))
    if len(all_pred_indices) == 0:
        tp = 0
        fp = 0
        fn = len(gt_boxes)
        return {'true_pos': tp, 'false_pos': fp, 'false_neg': fn}
    if len(all_gt_indices) == 0:
        tp = 0
        fp = len(pred_boxes)
        fn = 0
        return {'true_pos': tp, 'false_pos': fp, 'false_neg': fn}

    gt_idx_thr = []
    pred_idx_thr = []
    ious = []
    for ipb, pred_box in enumerate(pred_boxes):
        for igb, gt_box in enumerate(gt_boxes):
            iou = calc_iou_individual_rotated(pred_box, gt_box, img_size)
            if iou > iou_thr:
                gt_idx_thr.append(igb)
                pred_idx_thr.append(ipb)
                ious.append(iou)

    args_desc = np.argsort(ious)[::-1]
    if len(args_desc) == 0:
        # No matches
        tp = 0
        fp = len(pred_boxes)
        fn = len(gt_boxes)
    else:
        gt_match_idx = []
        pred_match_idx = []
        for idx in args_desc:
            gt_idx = gt_idx_thr[idx]
            pr_idx = pred_idx_thr[idx]
            # If the boxes are unmatched, add them to matches
            if (gt_idx not in gt_match_idx) and (pr_idx not in pred_match_idx):
                gt_match_idx.append(gt_idx)
                pred_match_idx.append(pr_idx)
        tp = len(gt_match_idx)
        fp = len(pred_boxes) - len(pred_match_idx)
        fn = len(gt_boxes) - len(gt_match_idx)

    return {'true_pos': tp, 'false_pos': fp, 'false_neg': fn}


def accuracy0_5(answer_path, dataset, aux_dataset="scripts/geochat_bench_dict.json"):
    # Replace with the path to the answers file
    results = None
    if dataset != "geochat_xbd":

        if type(answer_path) == dict:
            results = answer_path
        else:
            results = []
            with open(answer_path) as json_data:
                for line in json_data:
                    results.append(json.loads(line))

    with open(aux_dataset) as json_data:
        aux_results = json.load(json_data)

    img_results = {}
    num_bboxes = 0

    if dataset != "geochat_xbd":
        print("Number of images in Geochat: ", len(aux_results))
        print("Number of images predicted: ", len(results))
    
    i = 0
    # Loop over results and get precision, recall overall
    for id, result in tqdm(aux_results.items()):

        if dataset == "geochat_xbd":
            pred = result['answer']

            img_size = DIMENSIONS[result['dataset']]
            pred = convert_geochat_string(pred, img_size)

            ground_truth = result['ground_truth']
            ground_truth = np.array(ground_truth)
            num_bboxes += len(ground_truth)

            img_results[id] = get_single_image_results_rotated(ground_truth, pred, iou_thr=0.5)

        else:

            geochat_id = id.split(".")[0]

            img_size = DIMENSIONS[aux_results[geochat_id]['dataset']]
            ground_truth = result['ground_truth']
            ground_truth = np.array(ground_truth)
            num_bboxes += len(ground_truth)

            parsed_predicted = results[i]['predicted']
            # Load list of predicted and round truth bounding boxes for a single image
            try:
                predicted_boxes = ast.literal_eval("[" + parsed_predicted + "]")
            except:
                match = re.search(r'\[\[.*\]\]', parsed_predicted)
                if match:
                    predicted_boxes = ast.literal_eval(match.group())
                else:
                    predicted_boxes = []

            predicted_boxes = [[coord * 100 if coord < 1 else coord for coord in box] for box in predicted_boxes]
            
            # scale by img_size
            predicted_boxes = [[coord * img_size / 100 for coord in box] for box in predicted_boxes]

            assert results[i]['ground_truth'] == result['ground_truth']

            # convert the pred bboxes [xmin, ymin, xmax, ymax] to [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
            pred_bboxes = []
            for bbox in predicted_boxes:
                x1, y1, x2, y2 = bbox
                pred_bboxes.append([[x1, y1], [x2, y1], [x2, y2], [x1, y2]])

            img_results[id] = get_single_image_results_rotated(ground_truth, pred_bboxes, iou_thr=0.5, img_size=img_size)

        i+=1


    acc = np.sum([res['true_pos'] for res in img_results.values()]) / num_bboxes
    print("[email protected]: ", acc)
    return acc



if __name__ == '__main__':
    print("Geochat bench")
    geochat_path =  "scripts/geochat_bench_dict.json"
    answer_path = "scripts/geochat_bench_dict.json"
    acc_geochat = accuracy0_5(answer_path, dataset="geochat_xbd")
    print()


    print("Teochat bench")
    answer_path = "/deep/u/idormoy/aicc-win24-geo-vlm/videollava/scripts/geovlm/eval/QFabric/answers/geochat-referring-checkpoint14000_prompt_strategy_interleave_chronological_prefix_True_load_8bit_True_load_4bit_False_delete_system_prompt_False_tmp_0_end.json"
    acc_teochat = accuracy0_5(answer_path, dataset="geochat")
    print()


    print("Teochat-T bench")
    answer_path = "/deep/u/idormoy/aicc-win24-geo-vlm/videollava/videollava/eval/video/geochat-bench-ckpt8000-FIXED_prompt_strategy_interleave_chronological_prefix_True_load_8bit_False_load_4bit_True_delete_system_prompt_False_tmp_0_end (1).json"
    acc_teochatT = accuracy0_5(answer_path, dataset="geochat")
    print()



    print("VideoLLaVA bench")
    answer_path = "/deep/u/idormoy/aicc-win24-geo-vlm/videollava/videollava/eval/video/geochat-referring-Video-LLaVA-7B_prompt_strategy_interleave_chronological_prefix_True_load_8bit_False_load_4bit_True_delete_system_prompt_False_tmp_0_end (1).json"
    acc_videollava = accuracy0_5(answer_path, dataset="geochat")
    print()



    print("Overall accuracies")
    print("Geochat: ", acc_geochat)
    print("Teochat: ", acc_teochat)
    print("Teochat-T: ", acc_teochatT)
    print("VideoLLaVA: ", acc_videollava)