File size: 15,465 Bytes
134cb11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
"""
Code adapted from calculate_mean_ap.py
author: Timothy C. Arlen
date: 28 Feb 2018
"""
import sys
sys.path.append('/deep/u/joycech/aicc-working/videollava')
from collections import defaultdict
import numpy as np
import json
import ast
import re
import cv2
from shapely import wkt, Polygon, box
from infer_utils import create_mask, create_mask_s2looking
def calc_iou_individual(pred_box, gt_box):
"""Calculate IoU of single predicted and ground truth box
Args:
pred_box (list of floats): location of predicted object as
[xmin, ymin, xmax, ymax]
gt_box (list of floats): location of ground truth object as
[xmin, ymin, xmax, ymax]
Returns:
float: value of the IoU for the two boxes.
Raises:
AssertionError: if the box is obviously malformed
"""
x1_t, y1_t, x2_t, y2_t = gt_box
try:
x1_p, y1_p, x2_p, y2_p = pred_box
except:
print("Prediction box is malformed? pred box: {}".format(pred_box))
return 0.0
if (x1_p > x2_p) or (y1_p > y2_p):
print("Prediction box is malformed? pred box: {}".format(pred_box))
return 0.0
if (x1_t > x2_t) or (y1_t > y2_t):
raise AssertionError(
"Ground Truth box is malformed? true box: {}".format(gt_box))
if (x2_t < x1_p or x2_p < x1_t or y2_t < y1_p or y2_p < y1_t):
return 0.0
far_x = np.min([x2_t, x2_p])
near_x = np.max([x1_t, x1_p])
far_y = np.min([y2_t, y2_p])
near_y = np.max([y1_t, y1_p])
inter_area = (far_x - near_x + 1) * (far_y - near_y + 1)
true_box_area = (x2_t - x1_t + 1) * (y2_t - y1_t + 1)
pred_box_area = (x2_p - x1_p + 1) * (y2_p - y1_p + 1)
iou = inter_area / (true_box_area + pred_box_area - inter_area)
return iou
def get_single_image_bound_results(gt_wkts, pred_boxes, img_size=256, dataset=None, id=None, predicted_mask=None, split=None, question=None):
"""
Calculates upper bound and lower bound number of true_pos, false_pos, false_neg from single batch of boxes.
Args:
gt_wkts (list of strs): list of wkt strings of input polygons, scaled to raw pixel value
pred_boxes (list of lists): list of list of boxes, where each box is formatted
as [x_min, y_min, x_max, y_max] on scale from 0-100
img_size (int): dimensions of the image. defaults to 256.
Returns:
tuple of dicts: true positives (int), false positives (int), false negatives (int)
"""
lb_preds = [[num * img_size / 100 for num in box] for box in pred_boxes]
# add error handling for this type of outputs: [0, 10, 12, 22], [0, 6, 12, 19], [0, 0], [31, 0]
try:
lb_preds = [box(*pred_box) for pred_box in lb_preds]
except:
lb_preds = []
for pred_box in pred_boxes:
if len(pred_box) == 4:
lb_preds.append(box(*pred_box))
if isinstance(gt_wkts, str):
gt_polygons = [wkt.loads(gt_wkts)]
elif gt_wkts is None:
gt_polygons = []
else:
gt_polygons = [wkt.loads(gt_wkt) for gt_wkt in gt_wkts]
# get mask of all gt_polygons and lb_preds
if dataset == None:
gt_mask = create_mask(gt_polygons, (img_size, img_size))
else:
gt_mask = create_mask_s2looking(id, split=split, question=question)
#gt_mask = create_mask(gt_polygons, (img_size, img_size))
if dataset != "geochat_s2looking":
lb_preds_mask = create_mask(lb_preds, (img_size, img_size))
else:
lb_preds_mask = predicted_mask
# get lower bound intersection and union masks
intersection = np.logical_and(gt_mask, lb_preds_mask)
union = np.logical_or(gt_mask, lb_preds_mask)
# compute lb metrics
lower_bound_iou = np.sum(intersection) / np.sum(union)
if np.sum(intersection) == 0 and np.sum(union) == 0:
return None, None
if np.isnan(lower_bound_iou):
lower_bound_iou = 0
fp = np.sum(np.logical_and(lb_preds_mask, np.logical_not(gt_mask)))
tp = np.sum(np.logical_and(lb_preds_mask, gt_mask))
fn = np.sum(np.logical_and(np.logical_not(lb_preds_mask), gt_mask))
lb_stats = {'true_pos': tp,
'false_pos': fp,
'false_neg': fn,
'intersection': np.sum(intersection),
'union': np.sum(union)}
return lb_stats
def get_single_image_results(gt_boxes, pred_boxes, iou_thr):
"""Calculates number of true_pos, false_pos, false_neg from single batch of boxes.
Args:
gt_boxes (list of list of floats): list of locations of ground truth
objects as [xmin, ymin, xmax, ymax]
pred_boxes (dict): dict of dicts of 'boxes' (formatted like `gt_boxes`)
and 'scores'
iou_thr (float): value of IoU to consider as threshold for a
true prediction.
Returns:
dict: true positives (int), false positives (int), false negatives (int)
"""
all_pred_indices = range(len(pred_boxes))
all_gt_indices = range(len(gt_boxes))
if len(all_pred_indices) == 0:
tp = 0
fp = 0
fn = len(gt_boxes)
return {'true_pos': tp, 'false_pos': fp, 'false_neg': fn}
if len(all_gt_indices) == 0:
tp = 0
fp = len(pred_boxes)
fn = 0
return {'true_pos': tp, 'false_pos': fp, 'false_neg': fn}
gt_idx_thr = []
pred_idx_thr = []
ious = []
for ipb, pred_box in enumerate(pred_boxes):
for igb, gt_box in enumerate(gt_boxes):
iou = calc_iou_individual(pred_box, gt_box)
if iou > iou_thr:
gt_idx_thr.append(igb)
pred_idx_thr.append(ipb)
ious.append(iou)
args_desc = np.argsort(ious)[::-1]
if len(args_desc) == 0:
# No matches
tp = 0
fp = len(pred_boxes)
fn = len(gt_boxes)
else:
gt_match_idx = []
pred_match_idx = []
for idx in args_desc:
gt_idx = gt_idx_thr[idx]
pr_idx = pred_idx_thr[idx]
# If the boxes are unmatched, add them to matches
if (gt_idx not in gt_match_idx) and (pr_idx not in pred_match_idx):
gt_match_idx.append(gt_idx)
pred_match_idx.append(pr_idx)
tp = len(gt_match_idx)
fp = len(pred_boxes) - len(pred_match_idx)
fn = len(gt_boxes) - len(gt_match_idx)
return {'true_pos': tp, 'false_pos': fp, 'false_neg': fn}
def calc_precision_recall(img_results):
"""Calculates precision and recall from the set of images
Args:
img_results (dict): dictionary formatted like:
{
'img_id1': {'true_pos': int, 'false_pos': int, 'false_neg': int},
'img_id2': ...
...
}
Returns:
tuple: of floats of (precision, recall)
"""
true_pos = 0; false_pos = 0; false_neg = 0
for _, res in img_results.items():
true_pos += res['true_pos']
false_pos += res['false_pos']
false_neg += res['false_neg']
try:
precision = true_pos/(true_pos + false_pos)
except ZeroDivisionError:
precision = 0.0
print(true_pos, "true_pos", false_pos, "false_pos", false_neg, "false_neg")
try:
recall = true_pos/(true_pos + false_neg)
except ZeroDivisionError:
recall = 0.0
return (precision, recall)
def extract_bboxes(input_string):
"""
Takes as an input a string like in the image, there are two buildings that have been changed. the first building is located at [0.0, 0.69, 0.45, 0.9] and the second building is located at [0.46, 0.69, 0.99, 0.91]
Returns a list of bounding boxes in the format [x_min, y_min, x_max, y_max]
Input:
input_string (str): string containing the bounding boxes
Returns:
list of lists: list of bounding boxes
"""
matches = re.findall(r'\[\[.*?\]\]', input_string)
return [ast.literal_eval(match) for match in matches]
def referring_expression(answer_path, dataset, verbose=False, saving_path_root=None, img_size=256, split=None):
if type(answer_path) == dict:
results = answer_path
else:
with open(answer_path) as json_data:
results = json.load(json_data)
img_results = {}
lb_results = {}
# Loop over results and get precision, recall overall
for id, result in results.items():
if 'temporal_referring_expression' in result['task']:
if not "s2looking" in dataset:
continue # no bounding box outputs for temporal_referring_expression
# for the geochat s2looking predictions, we work directly with the predicted mask instead of the bounding boxes
if dataset == 'geochat_s2looking':
if 'referring_expression' in result['task'] or 'localization' in result['task']:
lb_res = get_single_image_bound_results(result['original_input_polygon'], [], dataset=dataset, id=id, predicted_mask=result['predicted_mask'], split=split, question=result["question"])
if lb_res != None:
lb_results[id] = lb_res
continue
elif 'question_answering' in result['task']:
continue
if 'referring_expression' in result['task'] or 'largest building' in result['task'] or "canonical" in result['task'] or 'localization' in result['task'] \
or 'geochat_referring' in result['task']:
# No bounding boxes in predicted string
if "[" not in result["predicted"]:
# Ground truth has no bounding boxes
if result["ground_truth"].startswith("There are no") or "no" in result["ground_truth"] or "No" in result["ground_truth"]:
# Discard true negatives
continue
# Ground truth has bounding boxes, not identified by the model --> all false negatives
else:
false_neg = "[" + result["ground_truth"] + "]"
false_neg = false_neg.replace(".", "")
try:
false_neg = len(ast.literal_eval(false_neg))
except:
# count the number of opening '[' in the string
false_neg = false_neg.count('[') - 1
if not "s2looking" in dataset:
gt_mask = create_mask(wkt.loads(result['original_input_polygon']), (img_size, img_size))
else:
gt_mask = create_mask_s2looking(id, split=split, question=result['question'])
# gt_mask = create_mask(wkt.loads(result['original_input_polygon']), (img_size, img_size))
img_results[id] = {'true_pos': 0, 'false_pos': 0, 'false_neg': false_neg, 'intersection':0, 'union':false_neg}
false_neg = np.sum(gt_mask)
lb_results[id] = {'true_pos': 0, 'false_pos': 0, 'false_neg': false_neg, 'intersection':0, 'union':false_neg}
# Bounding boxes in predicted and output string --> compare bounding boxes
else:
# To deal with cases where the model outputs an incomplete bounding box (e.g. "[24, 76,")
first_open_bracket_ind = result["predicted"].find("[")
last_close_bracket_ind = result["predicted"].rfind("]")
if last_close_bracket_ind != -1 and first_open_bracket_ind != -1:
parsed_predicted = result["predicted"][first_open_bracket_ind:last_close_bracket_ind+1]
else:
parsed_predicted = ""
# Load list of predicted bounding boxes
try:
predicted_boxes = ast.literal_eval("[" + parsed_predicted + "]")
except:
match = re.search(r'\[\[.*\]\]', result["predicted"])
if match:
predicted_boxes = ast.literal_eval(match.group())
else:
predicted_boxes = []
predicted_boxes = [[coord * 100 if coord < 1 else coord for coord in box] for box in predicted_boxes]
# Load list of ground truth bounding boxes
if result["ground_truth"].startswith("There are no") or "no" in result["ground_truth"].lower():
# If ground truth contains no boxes
ground_truth_boxes = []
first_open_bracket_ind = result["ground_truth"].find("[")
last_close_bracket_ind = result["ground_truth"].rfind("]")
if last_close_bracket_ind != -1 and first_open_bracket_ind != -1:
parsed_gt = result["ground_truth"][first_open_bracket_ind:last_close_bracket_ind+1]
else:
parsed_gt = ""
try:
ground_truth_boxes = ast.literal_eval("[" + parsed_gt + "]")
except:
match = re.search(r'\[\[.*\]\]', result["ground_truth"])
if match:
ground_truth_boxes = ast.literal_eval(match.group())
else:
ground_truth_boxes = []
# Get mask results from the two previous parsings
gt_wkts = result['original_input_polygon']
img_results[id] = get_single_image_results(ground_truth_boxes, predicted_boxes, iou_thr=0.5) ######
if 'referring_expression' in result['task'] or 'largest building' in result['task'] or "canonical" in result['task'] or 'localization' in result['task']:
if not "s2looking" in dataset:
lb_results[id] = get_single_image_bound_results(gt_wkts, predicted_boxes)
elif dataset=="s2looking":
lb_results[id] = get_single_image_bound_results(gt_wkts, predicted_boxes, dataset=dataset, id=id, split=split, question=result["question"])
else:
lb_results[id] = get_single_image_bound_results(gt_wkts, predicted_boxes, predicted_mask=result['predicted_mask'], split=split, question=result["question"])
precision, recall = calc_precision_recall(img_results)
print("Referring expression results (precision, recall): ", precision, recall)
print("Acc@0.5: ", np.sum([res['true_pos'] for res in img_results.values()]) / len(results.keys()))
if len(lb_results) != 0:
lb_intersection = np.sum([res['intersection'] for res in lb_results.values()])
lb_union = np.sum([res['union'] for res in lb_results.values()])
print("Lower bound IOU: ", lb_intersection / lb_union if lb_union != 0 else 0)
lb_precision, lb_recall = calc_precision_recall(lb_results)
print('Lower bound precision: ', lb_precision)
print('Lower bound recall: ', lb_recall)
print("Lower bound F1: ", 2 * (lb_precision * lb_recall) / (lb_precision + lb_recall) if (lb_precision + lb_recall) != 0 else 0)
if saving_path_root:
with open(f"{saving_path_root}/referring_expression_scores.json", 'w') as f:
json.dump(img_results, f)
if __name__ == '__main__':
answer_path = "scripts/geovlm/eval/xBD/answers/ckpt14000-old-aux-xbd-test-canon-auxiliary_interleave.json"
referring_expression(answer_path, dataset="xbd") |