File size: 2,426 Bytes
0688f83 bc58cec 82d632c 7e5e60c bc58cec 7e5e60c bc58cec 0688f83 bc58cec 7e5e60c 0688f83 7e5e60c bc58cec 7e5e60c bc58cec 0688f83 bc58cec 0688f83 7e5e60c 0688f83 7e5e60c 5d06ed0 0688f83 bc58cec 0688f83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
from transformers import pipeline
# Load language detection model
lang_classifier = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")
# Load translation model (multi-language to English)
translator = pipeline("translation", model="facebook/nllb-200-distilled-600M")
# Load hate speech detection model
offensive_classifier = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-offensive")
# Mapping from ISO 639-1 to NLLB-200 language codes
LANGUAGE_CODES = {
"en": "eng_Latn", "fr": "fra_Latn", "es": "spa_Latn", "de": "deu_Latn",
"bg": "bul_Cyrl", "ru": "rus_Cyrl", "it": "ita_Latn", "zh": "zho_Hans",
"ar": "arb_Arab", "pt": "por_Latn", "nl": "nld_Latn", "hi": "hin_Deva"
}
def analyze_text(text):
if not text.strip():
return {"error": "No text provided"}, {"error": "No text provided"}
# Detect language
lang_result = lang_classifier(text)
detected_language = lang_result[0]['label']
language_confidence = lang_result[0]['score']
# Convert detected language to NLLB-200 format
detected_language_nllb = LANGUAGE_CODES.get(detected_language, "eng_Latn")
# Translate if not English
translated_text = text
if detected_language_nllb != "eng_Latn":
translation_result = translator(text, src_lang=detected_language_nllb, tgt_lang="eng_Latn")
translated_text = translation_result[0]['translation_text']
# Detect hate speech using the translated text
hate_result = offensive_classifier(translated_text)
language_output = {
"language": detected_language,
"confidence": language_confidence,
"original_text": text,
"translated_text": translated_text if detected_language_nllb != "eng_Latn" else "Already in English"
}
hate_output = {
"label": hate_result[0]['label'],
"score": hate_result[0]['score']
}
return language_output, hate_output
# Define the Gradio interface
iface = gr.Interface(
fn=analyze_text,
inputs=gr.Textbox(label="Enter text"),
outputs=[
gr.JSON(label="Language Detection & Translation"),
gr.JSON(label="Hate Speech Detection")
],
title="Detect language, translate, and check for offensive speech",
description="Enter text..."
)
# Launch the Gradio app
iface.launch(server_name="0.0.0.0", server_port=7860, share=True)
|