File size: 1,382 Bytes
bc58cec
 
82d632c
bc58cec
 
82d632c
bc58cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from flask import Flask, request, jsonify
from transformers import pipeline

# Initialize Flask app
app = Flask(__name__)

# Load language detection model from Hugging Face
lang_classifier = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")

# Load hate speech detection model from Hugging Face
hate_classifier = pipeline("text-classification", model="Hate-speech-CNERG/dehatebert-mono-english")

# Route: Health check
@app.route("/", methods=["GET"])
def home():
    return jsonify({"message": "Language & Hate Speech API is running!"})

# Route: Detect Language
@app.route("/detect-language", methods=["POST"])
def detect_language():
    data = request.json
    text = data.get("text", "").strip()

    if not text:
        return jsonify({"error": "No text provided"}), 400

    result = lang_classifier(text)
    return jsonify({"language": result[0]['label'], "confidence": result[0]['score']})

# Route: Detect Hate Speech
@app.route("/detect-hate-speech", methods=["POST"])
def detect_hate_speech():
    data = request.json
    text = data.get("text", "").strip()

    if not text:
        return jsonify({"error": "No text provided"}), 400

    result = hate_classifier(text)
    return jsonify({"label": result[0]['label'], "score": result[0]['score']})

# Run the server
if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860)