|
|
|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
|
|
import torch |
|
from peft import AutoPeftModelForCausalLM |
|
from transformers import AutoTokenizer, pipeline |
|
|
|
peft_model_id = "jinhybr/code-llama-7b-text-to-sql" |
|
|
|
|
|
|
|
model = AutoPeftModelForCausalLM.from_pretrained( |
|
peft_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16 |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(peft_model_id) |
|
|
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
|
|
|
|
def translate_to_sql(question): |
|
strA = 'You are a text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA.\nSCHEMA:\nCREATE TABLE table_17429402_7 (school VARCHAR, last_occ_championship VARCHAR)' |
|
combined_json_data = [{'content': strA, 'role': 'system'}, {'content': question, 'role': 'user'}] |
|
prompt = pipe.tokenizer.apply_chat_template(combined_json_data, tokenize=False, add_generation_prompt=True) |
|
outputs = pipe(prompt, max_new_tokens=256, do_sample=False, temperature=0.1, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.pad_token_id) |
|
return outputs[0]['generated_text'][len(prompt):].strip() |
|
|
|
question_input = gr.inputs.Textbox(lines=7, label="Enter your question") |
|
output_text = gr.outputs.Textbox(label="Generated SQL Query") |
|
|
|
|
|
gr.Interface(fn=translate_to_sql, inputs=question_input, outputs=output_text, title="Text to SQL Translator", description="Translate English questions to SQL queries.").launch() |
|
|
|
|
|
gr.Interface(fn=classify_text, inputs=inputs, outputs=outputs, title="Sentiment Analysis", description="Predict the sentiment of text.").launch() |
|
|