Spaces:
Running
Running
| import gc | |
| from typing import TYPE_CHECKING | |
| if TYPE_CHECKING: | |
| from collections.abc import Callable | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from controlnet_aux import ( | |
| CannyDetector, | |
| ContentShuffleDetector, | |
| HEDdetector, | |
| LineartAnimeDetector, | |
| LineartDetector, | |
| MidasDetector, | |
| MLSDdetector, | |
| NormalBaeDetector, | |
| OpenposeDetector, | |
| PidiNetDetector, | |
| ) | |
| from controlnet_aux.util import HWC3 | |
| from cv_utils import resize_image | |
| from depth_estimator import DepthEstimator | |
| from image_segmentor import ImageSegmentor | |
| class Preprocessor: | |
| MODEL_ID = "lllyasviel/Annotators" | |
| def __init__(self) -> None: | |
| self.model: Callable = None # type: ignore | |
| self.name = "" | |
| def load(self, name: str) -> None: # noqa: C901, PLR0912 | |
| if name == self.name: | |
| return | |
| if name == "HED": | |
| self.model = HEDdetector.from_pretrained(self.MODEL_ID) | |
| elif name == "Midas": | |
| self.model = MidasDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "MLSD": | |
| self.model = MLSDdetector.from_pretrained(self.MODEL_ID) | |
| elif name == "Openpose": | |
| self.model = OpenposeDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "PidiNet": | |
| self.model = PidiNetDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "NormalBae": | |
| self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "Lineart": | |
| self.model = LineartDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "LineartAnime": | |
| self.model = LineartAnimeDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "Canny": | |
| self.model = CannyDetector() | |
| elif name == "ContentShuffle": | |
| self.model = ContentShuffleDetector() | |
| elif name == "DPT": | |
| self.model = DepthEstimator() | |
| elif name == "UPerNet": | |
| self.model = ImageSegmentor() | |
| elif name == 'texnet': | |
| self.model = TexnetPreprocessor() | |
| else: | |
| raise ValueError | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| self.name = name | |
| def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image: # noqa: ANN003 | |
| if self.name == "Canny": | |
| if "detect_resolution" in kwargs: | |
| detect_resolution = kwargs.pop("detect_resolution") | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=detect_resolution) | |
| image = self.model(image, **kwargs) | |
| return PIL.Image.fromarray(image) | |
| if self.name == "Midas": | |
| detect_resolution = kwargs.pop("detect_resolution", 512) | |
| image_resolution = kwargs.pop("image_resolution", 512) | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=detect_resolution) | |
| image = self.model(image, **kwargs) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=image_resolution) | |
| return PIL.Image.fromarray(image) | |
| return self.model(image, **kwargs) | |
| # https://github.com/huggingface/controlnet_aux/blob/master/src/controlnet_aux/canny/__init__.py | |
| class TexnetPreprocessor: | |
| def __call__(self, input_image=None, low_threshold=100, high_threshold=200, image_resolution=512, output_type=None, **kwargs): | |
| if "img" in kwargs: | |
| warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning) | |
| input_image = kwargs.pop("img") | |
| if input_image is None: | |
| raise ValueError("input_image must be defined.") | |
| if not isinstance(input_image, np.ndarray): | |
| input_image = np.array(input_image, dtype=np.uint8) | |
| output_type = output_type or "pil" | |
| else: | |
| output_type = output_type or "np" | |
| input_image = HWC3(input_image) | |
| input_image = resize_image(input_image, image_resolution) | |
| H, W, C = input_image.shape | |
| # detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
| output_image = input_image.copy() | |
| if output_type == "pil": | |
| # detected_map = Image.fromarray(detected_map) | |
| output_image = PIL.Image.fromarray(output_image) | |
| return output_image |