|
|
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
labels = ['ๅใณ', 'ๆฒใใฟ', 'ๆๅพ
', '้ฉใ', 'ๆใ', 'ไฟก้ ผ', 'ๆฒใใฟ', 'ๅซๆช'] |
|
|
|
def np_softmax(x): |
|
x_exp = torch.exp(torch.tensor(x) - torch.max(torch.tensor(x))) |
|
f_x = x_exp / x_exp.sum() |
|
return f_x |
|
|
|
def emotion_clf(text): |
|
model.eval() |
|
tokens = tokenizer(text, truncation=True, return_tensors="pt") |
|
tokens.to(model.device) |
|
preds = model(**tokens) |
|
prob = np_softmax(preds.logits.cpu().detach().numpy()[0]) |
|
out_dict = {n: p.item() for n, p in zip(labels, prob)} |
|
return out_dict |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-whole-word-masking") |
|
model = AutoModelForSequenceClassification.from_pretrained("jingwora/language-emotion-classification-ja", num_labels=8) |
|
|
|
title = "Emotion Classification" |
|
description = "Enter Japanese text and get the emotion probabilities." |
|
text = gr.Textbox(placeholder="Enter japanese text", label="text", lines=3) |
|
label = gr.Label(num_top_classes=8) |
|
examples = [ |
|
["ๅคงๅใชๅไบบใ็ตๅฉใ็บ่กจใใใจใใๅฟใๆบใก่ถณใใๅนธใใๆใใพใใใ"], |
|
["ๆใใ็ฅๆฏใไบกใใชใฃใใจใใ่ธใซๆทฑใๆฒใใฟใๅบใใใพใใใ"], |
|
["ๆฐใใไปไบใๅงใใๅๅคใๆๆฅใใใฎๆช็ฅใฎไธ็ใซ่ธใ้ซ้ณดใใพใใใ"], |
|
["ๅฑฑ้ใๆญฉใใฆใใใใ็พใใๆปใ็พใใๆใใๆฏใ้ฃฒใ้ฉใใๆใใพใใใ"], |
|
["ๅ
ฌๅนณใใๆฌ ใใๆฑบๅฎใๅใใใจใใๆคใใๆฑใใฆๆใใๆนงใไธใใใพใใใ"], |
|
["้ฃใใๅฑ้ขใงไปฒ้ใใใฃใใใจๆฏใใฆใใใฆใๅฟใใใฎไฟก้ ผใๆใใพใใใ"], |
|
["ๅคฑๆใใใจใใๅฟใซ้ใๆฒใใฟใๅบใใใไฝใๆใซใคใใชใ็ถๆณใงใใใ"], |
|
["ๆฑใใๅ ดๆใง้ทๆ้้ใใใใจใใไธๅฟซๆใจๅซๆชๆใๅใใพใใใ"], |
|
] |
|
|
|
demo = gr.Interface( |
|
fn=emotion_clf, |
|
inputs=text, |
|
outputs=label, |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
theme="freddyaboulton/dracula_revamped", |
|
) |
|
|
|
demo.launch() |
|
|