Update main.py
Browse files
main.py
CHANGED
|
@@ -1,3 +1,171 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
Created By Lewis Kamau Kimaru
|
| 3 |
+
Sema translator api backend
|
| 4 |
+
January 2024
|
| 5 |
+
Docker deployment
|
| 6 |
+
'''
|
| 7 |
|
| 8 |
+
from fastapi import FastAPI, HTTPException, Request
|
| 9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
+
from fastapi.responses import HTMLResponse
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import ctranslate2
|
| 13 |
+
import sentencepiece as spm
|
| 14 |
+
import fasttext
|
| 15 |
+
import uvicorn
|
| 16 |
+
import pytz
|
| 17 |
+
from datetime import datetime
|
| 18 |
+
import os
|
| 19 |
+
|
| 20 |
+
app = FastAPI()
|
| 21 |
+
|
| 22 |
+
fasttext.FastText.eprint = lambda x: None
|
| 23 |
+
|
| 24 |
+
# Get time of request
|
| 25 |
+
|
| 26 |
+
def get_time():
|
| 27 |
+
nairobi_timezone = pytz.timezone('Africa/Nairobi')
|
| 28 |
+
current_time_nairobi = datetime.now(nairobi_timezone)
|
| 29 |
+
|
| 30 |
+
curr_day = current_time_nairobi.strftime('%A')
|
| 31 |
+
curr_date = current_time_nairobi.strftime('%Y-%m-%d')
|
| 32 |
+
curr_time = current_time_nairobi.strftime('%H:%M:%S')
|
| 33 |
+
|
| 34 |
+
full_date = f"{curr_day} | {curr_date} | {curr_time}"
|
| 35 |
+
return full_date, curr_time
|
| 36 |
+
|
| 37 |
+
# Load the model and tokenizer ..... only once!
|
| 38 |
+
beam_size = 1 # change to a smaller value for faster inference
|
| 39 |
+
device = "cpu" # or "cuda"
|
| 40 |
+
|
| 41 |
+
# Language Prediction model
|
| 42 |
+
print("\nimporting Language Prediction model")
|
| 43 |
+
lang_model_file = "lid218e.bin"
|
| 44 |
+
lang_model_full_path = os.path.join(os.path.dirname(__file__), lang_model_file)
|
| 45 |
+
lang_model = fasttext.load_model(lang_model_full_path)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Load the source SentencePiece model
|
| 49 |
+
print("\nimporting SentencePiece model")
|
| 50 |
+
sp_model_file = "spm.model"
|
| 51 |
+
sp_model_full_path = os.path.join(os.path.dirname(__file__), sp_model_file)
|
| 52 |
+
sp = spm.SentencePieceProcessor()
|
| 53 |
+
sp.load(sp_model_full_path)
|
| 54 |
+
|
| 55 |
+
# Import The Translator model
|
| 56 |
+
print("\nimporting Translator model")
|
| 57 |
+
ct_model_file = "sematrans-3.3B"
|
| 58 |
+
ct_model_full_path = os.path.join(os.path.dirname(__file__), ct_model_file)
|
| 59 |
+
translator = ctranslate2.Translator(ct_model_full_path, device)
|
| 60 |
+
|
| 61 |
+
print('\nDone importing models\n')
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def translate_detect(userinput: str, target_lang: str):
|
| 65 |
+
source_sents = [userinput]
|
| 66 |
+
source_sents = [sent.strip() for sent in source_sents]
|
| 67 |
+
target_prefix = [[target_lang]] * len(source_sents)
|
| 68 |
+
|
| 69 |
+
# Predict the source language
|
| 70 |
+
predictions = lang_model.predict(source_sents[0], k=1)
|
| 71 |
+
source_lang = predictions[0][0].replace('__label__', '')
|
| 72 |
+
|
| 73 |
+
# Subword the source sentences
|
| 74 |
+
source_sents_subworded = sp.encode(source_sents, out_type=str)
|
| 75 |
+
source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
|
| 76 |
+
|
| 77 |
+
# Translate the source sentences
|
| 78 |
+
translations = translator.translate_batch(
|
| 79 |
+
source_sents_subworded,
|
| 80 |
+
batch_type="tokens",
|
| 81 |
+
max_batch_size=2024,
|
| 82 |
+
beam_size=beam_size,
|
| 83 |
+
target_prefix=target_prefix,
|
| 84 |
+
)
|
| 85 |
+
translations = [translation[0]['tokens'] for translation in translations]
|
| 86 |
+
|
| 87 |
+
# Desubword the target sentences
|
| 88 |
+
translations_desubword = sp.decode(translations)
|
| 89 |
+
translations_desubword = [sent[len(target_lang):] for sent in translations_desubword]
|
| 90 |
+
|
| 91 |
+
# Return the source language and the translated text
|
| 92 |
+
return source_lang, translations_desubword
|
| 93 |
+
|
| 94 |
+
def translate_enter(userinput: str, source_lang: str, target_lang: str):
|
| 95 |
+
source_sents = [userinput]
|
| 96 |
+
source_sents = [sent.strip() for sent in source_sents]
|
| 97 |
+
target_prefix = [[target_lang]] * len(source_sents)
|
| 98 |
+
|
| 99 |
+
# Subword the source sentences
|
| 100 |
+
source_sents_subworded = sp.encode(source_sents, out_type=str)
|
| 101 |
+
source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
|
| 102 |
+
|
| 103 |
+
# Translate the source sentences
|
| 104 |
+
translations = translator.translate_batch(source_sents_subworded, batch_type="tokens", max_batch_size=2024, beam_size=beam_size, target_prefix=target_prefix)
|
| 105 |
+
translations = [translation[0]['tokens'] for translation in translations]
|
| 106 |
+
|
| 107 |
+
# Desubword the target sentences
|
| 108 |
+
translations_desubword = sp.decode(translations)
|
| 109 |
+
translations_desubword = [sent[len(target_lang):] for sent in translations_desubword]
|
| 110 |
+
|
| 111 |
+
# Return the source language and the translated text
|
| 112 |
+
return translations_desubword[0]
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
@app.get("/")
|
| 116 |
+
async def read_root():
|
| 117 |
+
gradio_interface = """
|
| 118 |
+
<html>
|
| 119 |
+
<meta name="viewport" content="width=device-width, height=device-height, initial-scale=1.0">
|
| 120 |
+
<head>
|
| 121 |
+
<title>Sema</title>
|
| 122 |
+
</head>
|
| 123 |
+
<frameset>
|
| 124 |
+
<frame src=https://kamau1-semaapi-frontend.hf.space/?embedded=true'>
|
| 125 |
+
</frameset>
|
| 126 |
+
</html>
|
| 127 |
+
"""
|
| 128 |
+
return HTMLResponse(content=gradio_interface)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
@app.post("/translate_detect/")
|
| 132 |
+
async def translate_detect_endpoint(request: Request):
|
| 133 |
+
datad = await request.json()
|
| 134 |
+
userinputd = datad.get("userinput")
|
| 135 |
+
target_langd = datad.get("target_lang")
|
| 136 |
+
dfull_date = get_time()[0]
|
| 137 |
+
print(f"\nrequest: {dfull_date}\nTarget Language; {target_langd}, User Input: {userinputd}\n")
|
| 138 |
+
|
| 139 |
+
if not userinputd or not target_langd:
|
| 140 |
+
raise HTTPException(status_code=422, detail="Both 'userinput' and 'target_lang' are required.")
|
| 141 |
+
|
| 142 |
+
source_langd, translated_text_d = translate_detect(userinputd, target_langd)
|
| 143 |
+
dcurrent_time = get_time()[1]
|
| 144 |
+
print(f"\nresponse: {dcurrent_time}; ... Source_language: {source_langd}, Translated Text: {translated_text_d}\n\n")
|
| 145 |
+
return {
|
| 146 |
+
"source_language": source_langd,
|
| 147 |
+
"translated_text": translated_text_d[0],
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
@app.post("/translate_enter/")
|
| 152 |
+
async def translate_enter_endpoint(request: Request):
|
| 153 |
+
datae = await request.json()
|
| 154 |
+
userinpute = datae.get("userinput")
|
| 155 |
+
source_lange = datae.get("source_lang")
|
| 156 |
+
target_lange = datae.get("target_lang")
|
| 157 |
+
efull_date = get_time()[0]
|
| 158 |
+
print(f"\nrequest: {efull_date}\nSource_language; {source_lange}, Target Language; {target_lange}, User Input: {userinpute}\n")
|
| 159 |
+
|
| 160 |
+
if not userinpute or not target_lange:
|
| 161 |
+
raise HTTPException(status_code=422, detail="'userinput' 'sourc_lang'and 'target_lang' are required.")
|
| 162 |
+
|
| 163 |
+
translated_text_e = translate_enter(userinpute, source_lange, target_lange)
|
| 164 |
+
ecurrent_time = get_time()[1]
|
| 165 |
+
print(f"\nresponse: {ecurrent_time}; ... Translated Text: {translated_text_e}\n\n")
|
| 166 |
+
return {
|
| 167 |
+
"translated_text": translated_text_e,
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
print("\nAPI starting .......\n")
|