Create semapdf1.4.py
Browse files- version/semapdf1.4.py +169 -0
version/semapdf1.4.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
creator: Lewis Kamau Kimaru
|
| 3 |
+
Function: chat with pdf documents in different languages
|
| 4 |
+
best version yet
|
| 5 |
+
"""
|
| 6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 7 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
| 8 |
+
from langchain.vectorstores import FAISS
|
| 9 |
+
from langchain.chat_models import ChatOpenAI
|
| 10 |
+
from langchain.memory import ConversationBufferMemory
|
| 11 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 12 |
+
from langchain.llms import HuggingFaceHub
|
| 13 |
+
|
| 14 |
+
from typing import Union
|
| 15 |
+
|
| 16 |
+
from dotenv import load_dotenv
|
| 17 |
+
from PyPDF2 import PdfReader
|
| 18 |
+
import streamlit as st
|
| 19 |
+
import requests
|
| 20 |
+
import json
|
| 21 |
+
import os
|
| 22 |
+
|
| 23 |
+
# set this key as an environment variable
|
| 24 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
|
| 25 |
+
|
| 26 |
+
# Page configuration
|
| 27 |
+
st.set_page_config(page_title="SemaNaPDF", page_icon="📚",)
|
| 28 |
+
|
| 29 |
+
# Sema Translator
|
| 30 |
+
Public_Url = 'https://lewiskimaru-helloworld.hf.space' #endpoint
|
| 31 |
+
|
| 32 |
+
def translate(userinput, target_lang, source_lang=None):
|
| 33 |
+
if source_lang:
|
| 34 |
+
url = f"{Public_Url}/translate_enter/"
|
| 35 |
+
data = {
|
| 36 |
+
"userinput": userinput,
|
| 37 |
+
"source_lang": source_lang,
|
| 38 |
+
"target_lang": target_lang,
|
| 39 |
+
}
|
| 40 |
+
response = requests.post(url, json=data)
|
| 41 |
+
result = response.json()
|
| 42 |
+
print(type(result))
|
| 43 |
+
source_lange = source_lang
|
| 44 |
+
translation = result['translated_text']
|
| 45 |
+
|
| 46 |
+
else:
|
| 47 |
+
url = f"{Public_Url}/translate_detect/"
|
| 48 |
+
data = {
|
| 49 |
+
"userinput": userinput,
|
| 50 |
+
"target_lang": target_lang,
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
response = requests.post(url, json=data)
|
| 54 |
+
result = response.json()
|
| 55 |
+
source_lange = result['source_language']
|
| 56 |
+
translation = result['translated_text']
|
| 57 |
+
return source_lange, translation
|
| 58 |
+
|
| 59 |
+
def get_pdf_text(pdf : Union[str, bytes, bytearray]) -> str:
|
| 60 |
+
reader = PdfReader(pdf)
|
| 61 |
+
pdf_text = ''
|
| 62 |
+
for page in (reader.pages):
|
| 63 |
+
text = page.extract_text()
|
| 64 |
+
if text:
|
| 65 |
+
pdf_text += text
|
| 66 |
+
return text
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def get_text_chunks(text:str) ->list:
|
| 70 |
+
text_splitter = CharacterTextSplitter(
|
| 71 |
+
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
|
| 72 |
+
)
|
| 73 |
+
chunks = text_splitter.split_text(text)
|
| 74 |
+
return chunks
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_vectorstore(text_chunks : list) -> FAISS:
|
| 78 |
+
model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
| 79 |
+
encode_kwargs = {
|
| 80 |
+
"normalize_embeddings": True
|
| 81 |
+
} # set True to compute cosine similarity
|
| 82 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
| 83 |
+
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
|
| 84 |
+
)
|
| 85 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
| 86 |
+
return vectorstore
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
|
| 90 |
+
llm = HuggingFaceHub(
|
| 91 |
+
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 92 |
+
#repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
|
| 93 |
+
model_kwargs={"temperature": 0.5, "max_length": 1048},
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 97 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
| 98 |
+
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
|
| 99 |
+
)
|
| 100 |
+
return conversation_chain
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
st.markdown ("""
|
| 104 |
+
<style> div.stSpinner > div {
|
| 105 |
+
text-align:center;
|
| 106 |
+
text-align:center;
|
| 107 |
+
align-items: center;
|
| 108 |
+
justify-content: center;
|
| 109 |
+
}
|
| 110 |
+
</style>""", unsafe_allow_html=True)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def main():
|
| 115 |
+
st.title("SemaNaPDF📚")
|
| 116 |
+
# upload file
|
| 117 |
+
pdf = st.file_uploader("Upload a PDF Document", type="pdf")
|
| 118 |
+
if pdf is not None:
|
| 119 |
+
with st.spinner(""):
|
| 120 |
+
# get pdf text
|
| 121 |
+
raw_text = get_pdf_text(pdf)
|
| 122 |
+
|
| 123 |
+
# get the text chunks
|
| 124 |
+
text_chunks = get_text_chunks(raw_text)
|
| 125 |
+
|
| 126 |
+
# create vector store
|
| 127 |
+
vectorstore = get_vectorstore(text_chunks)
|
| 128 |
+
|
| 129 |
+
# create conversation chain
|
| 130 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
| 131 |
+
st.info("done")
|
| 132 |
+
|
| 133 |
+
#user_question = st.text_input("chat with your pdf ...")
|
| 134 |
+
# show user input
|
| 135 |
+
if "messages" not in st.session_state:
|
| 136 |
+
st.session_state.messages = []
|
| 137 |
+
|
| 138 |
+
for message in st.session_state.messages:
|
| 139 |
+
with st.chat_message(message["role"]):
|
| 140 |
+
st.markdown(message["content"])
|
| 141 |
+
|
| 142 |
+
if user_question := st.chat_input("Ask your document anything ......?"):
|
| 143 |
+
with st.chat_message("user"):
|
| 144 |
+
st.markdown(user_question)
|
| 145 |
+
|
| 146 |
+
user_langd, Queryd = translate(user_question, 'eng_Latn')
|
| 147 |
+
st.session_state.messages.append({"role": "user", "content": user_question})
|
| 148 |
+
response = st.session_state.conversation({"question": Queryd}) #Queryd
|
| 149 |
+
st.session_state.chat_history = response["chat_history"]
|
| 150 |
+
|
| 151 |
+
output = translate(response['answer'], user_langd, 'eng_Latn')[1] # translated response
|
| 152 |
+
with st.chat_message("assistant"):
|
| 153 |
+
#st.markdown(response['answer'])
|
| 154 |
+
st.markdown(output)
|
| 155 |
+
st.session_state.messages.append({"role": "assistant", "content": response['answer']})
|
| 156 |
+
|
| 157 |
+
# Signature
|
| 158 |
+
st.markdown(
|
| 159 |
+
"""
|
| 160 |
+
<div style="position: fixed; bottom: 0; right: 0; padding: 10px;">
|
| 161 |
+
<a href="https://kamaukimaru.vercel.app" target="_blank" style="font-size: 12px; color: #269129; text-decoration: none;">©2023 Lewis Kimaru. All rights reserved.</a>
|
| 162 |
+
</div>
|
| 163 |
+
""",
|
| 164 |
+
unsafe_allow_html=True
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
if __name__ == '__main__':
|
| 169 |
+
main()
|