File size: 4,681 Bytes
e762464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import HuggingFaceHub

from htmlTemplates import css, bot_template, user_template

from dotenv import load_dotenv
from PyPDF2 import PdfReader
import streamlit as st
import requests
import json
import os

# set this key as an environment variable
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']

# Page configuration
st.set_page_config(page_title="SemaNaPDF", page_icon="📚",)

# Sema Translator
#Public_Url = os.environ["sema_url"] #endpoint

def translate(userinput, target_lang, source_lang=None):
    if source_lang:
       url = "Public_Url/translate_enter/"
       data = {
           "userinput": userinput,
           "source_lang": source_lang,
           "target_lang": target_lang,
        }
       response = requests.post(url, json=data)
       result = response.json()
       print(type(result))
       source_lange = source_lang
       translation = result['translated_text']
       return source_lange, translation
    else:
      url = "Public_Url/translate_detect/"
      data = {
        "userinput": userinput,
        "target_lang": target_lang,
      }

      response = requests.post(url, json=data)
      result = response.json()
      source_lange = result['source_language']
      translation = result['translated_text']
      return source_lange, translation

def get_pdf_text(pdf_docs : list) -> str:
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text


def get_text_chunks(text:str) ->list:
    text_splitter = CharacterTextSplitter(
        separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


def get_vectorstore(text_chunks : list) -> FAISS:
    model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
    encode_kwargs = {
        "normalize_embeddings": True
    }  # set True to compute cosine similarity
    embeddings = HuggingFaceBgeEmbeddings(
        model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
    )
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore


def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
    llm = HuggingFaceHub(
        repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
        #repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
        model_kwargs={"temperature": 0.5, "max_length": 1048},
    )

    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm, retriever=vectorstore.as_retriever(), memory=memory
    )
    return conversation_chain

def main():
    st.title("SemaNaPDF📚")
    # upload file
    pdf_docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True
        )
    if pdf_docs is not None:
        with st.spinner("processing"):
            # get pdf text
            raw_text = get_pdf_text(pdf_docs)

            # get the text chunks
            text_chunks = get_text_chunks(raw_text)

            # create vector store
            vectorstore = get_vectorstore(text_chunks)

            # create conversation chain
            st.session_state.conversation = get_conversation_chain(vectorstore)
            st.info("done")
            
    #user_question = st.text_input("Get insights into your finances ...")
    # show user input
    if "messages" not in st.session_state:
        st.session_state.messages = []

    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    if user_question := st.chat_input("Ask your document anything ......?"):
        with st.chat_message("user"):
            st.markdown(user_question)
        st.session_state.messages.append({"role": "user", "content": user_question})
        response = st.session_state.conversation({"question": user_question})
        st.session_state.chat_history = response["chat_history"]
        with st.chat_message("assistant"):
            st.markdown(response)
            st.session_state.messages.append({"role": "assistant", "content": response})


if __name__ == '__main__':
    main()